MAP65‐1 and MAP65‐2 promote cell proliferation and axial growth in Arabidopsis roots
We investigated the role of the Arabidopsis microtubule associated proteins 65‐1 and 65‐2 (MAP65‐1 and MAP65‐2) in the control of axial root growth. Transgenic plants expressing fluorescent fusion proteins from native promoters indicated exactly overlapping accumulation of MAP65‐1 and MAP65‐2 in the...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2012-08, Vol.71 (3), p.454-463 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 463 |
---|---|
container_issue | 3 |
container_start_page | 454 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 71 |
creator | Lucas, Jessica R Shaw, Sidney L |
description | We investigated the role of the Arabidopsis microtubule associated proteins 65‐1 and 65‐2 (MAP65‐1 and MAP65‐2) in the control of axial root growth. Transgenic plants expressing fluorescent fusion proteins from native promoters indicated exactly overlapping accumulation of MAP65‐1 and MAP65‐2 in the root tip and elongation zone. Nearly identical protein accumulation patterns were observed when MAP65‐1 and MAP65‐2 were expressed behind a constitutive CaMV 35S promoter, suggesting a level of post‐transcriptional control that restricts these proteins to rapidly growing portions of the root. Co‐expression of MAP65‐1 and MAP65‐2 fusion proteins showed precise co‐localization to interphase and cytokinetic microtubule arrays. In interphase root tip cells, the fluorescent protein fusions labeled microtubules that were organized into a variety of different array patterns. In the rapidly growing cells of the root elongation zone, we found MAP65‐1 and MAP65‐2 co‐localized exclusively to the lateral faces of cells that were axially extending. Genetic analysis showed that MAP65‐1 and MAP65‐2 are coordinately required for proper root elongation. Double map65‐1‐1 map65‐2‐2 mutant roots from dark‐grown plants contained 50% fewer cells per file than wild‐type roots, but we found no evidence that cytokinesis was disrupted. We additionally discovered that cell length was significantly shorter in the mature regions of the root beyond the zone where MAP65‐1 and MAP65‐2 accumulated. Our data indicate that MAP65‐1 and MAP65‐2 play a critical role in root growth by promoting cell proliferation and axial extension. |
doi_str_mv | 10.1111/j.1365-313x.2012.05002.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1030079965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721715061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6462-ff3507c6d1da96fbba2a9ba8d1ef32e66efa600d7e838ee12a2885b0279b5e613</originalsourceid><addsrcrecordid>eNqNkMFu1DAQhi1ERZeFV4BICIlLwtiOnfjAYVUBBbWiEq3UmzVJ7OJVNl7srLq98Qg8I09Sp7sLEgeEL-PRfP_Mr5-QjEJB03u7LCiXIueUbwsGlBUgAFixfURmh8H1YzIDJSGvSsqOydMYlwC04rJ8Qo4ZK0vOajUj1-eLCyl-_fhJMxy67NCxbB38yo8ma03fT03vrAk4Oj88gLh12Gc3wd-O3zI3ZIuAjev8OrqYBe_H-IwcWeyjeb6vc3L14f3lyWl-9uXjp5PFWd7KUrLcWi6gamVHO1TSNg0yVA3WHTWWMyOlsSgBusrUvDaGMmR1LRpglWqEkZTPyZvd3uTx-8bEUa9cnEzjYPwmagocoFJKioS--gtd-k0YkrtEpYW1Ekwlqt5RbfAxBmP1OrgVhrsE6Sl9vdRTyHoKWU_p64f09TZJX-wPbJqV6X4LD3En4PUewNhibwMOrYt_OEkFiMTOybsdd-t6c_ffBvTlxefpl_Qvd3qLXuNNSDeuviayBACuoKL_JBjUnPF7gO2yPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027989529</pqid></control><display><type>article</type><title>MAP65‐1 and MAP65‐2 promote cell proliferation and axial growth in Arabidopsis roots</title><source>MEDLINE</source><source>Wiley Journals</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Lucas, Jessica R ; Shaw, Sidney L</creator><creatorcontrib>Lucas, Jessica R ; Shaw, Sidney L</creatorcontrib><description>We investigated the role of the Arabidopsis microtubule associated proteins 65‐1 and 65‐2 (MAP65‐1 and MAP65‐2) in the control of axial root growth. Transgenic plants expressing fluorescent fusion proteins from native promoters indicated exactly overlapping accumulation of MAP65‐1 and MAP65‐2 in the root tip and elongation zone. Nearly identical protein accumulation patterns were observed when MAP65‐1 and MAP65‐2 were expressed behind a constitutive CaMV 35S promoter, suggesting a level of post‐transcriptional control that restricts these proteins to rapidly growing portions of the root. Co‐expression of MAP65‐1 and MAP65‐2 fusion proteins showed precise co‐localization to interphase and cytokinetic microtubule arrays. In interphase root tip cells, the fluorescent protein fusions labeled microtubules that were organized into a variety of different array patterns. In the rapidly growing cells of the root elongation zone, we found MAP65‐1 and MAP65‐2 co‐localized exclusively to the lateral faces of cells that were axially extending. Genetic analysis showed that MAP65‐1 and MAP65‐2 are coordinately required for proper root elongation. Double map65‐1‐1 map65‐2‐2 mutant roots from dark‐grown plants contained 50% fewer cells per file than wild‐type roots, but we found no evidence that cytokinesis was disrupted. We additionally discovered that cell length was significantly shorter in the mature regions of the root beyond the zone where MAP65‐1 and MAP65‐2 accumulated. Our data indicate that MAP65‐1 and MAP65‐2 play a critical role in root growth by promoting cell proliferation and axial extension.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313x.2012.05002.x</identifier><identifier>PMID: 22443289</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Arabidopsis ; Arabidopsis - cytology ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biological and medical sciences ; Cell Proliferation ; Cell Size ; Cellular biology ; cytokinesis ; elongation ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Expression Regulation, Plant - physiology ; Interphase ; MAP65 ; Meristem - cytology ; Meristem - genetics ; Meristem - growth & development ; Meristem - physiology ; Microscopy, Fluorescence ; microtubule organization ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Microtubules - metabolism ; Mutation ; Phenotype ; Plant growth ; Plant physiology and development ; Plants, Genetically Modified ; Proteins ; Recombinant Fusion Proteins ; root growth ; roots ; Transgenic plants</subject><ispartof>The Plant journal : for cell and molecular biology, 2012-08, Vol.71 (3), p.454-463</ispartof><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6462-ff3507c6d1da96fbba2a9ba8d1ef32e66efa600d7e838ee12a2885b0279b5e613</citedby><cites>FETCH-LOGICAL-c6462-ff3507c6d1da96fbba2a9ba8d1ef32e66efa600d7e838ee12a2885b0279b5e613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2012.05002.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2012.05002.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26150544$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22443289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucas, Jessica R</creatorcontrib><creatorcontrib>Shaw, Sidney L</creatorcontrib><title>MAP65‐1 and MAP65‐2 promote cell proliferation and axial growth in Arabidopsis roots</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>We investigated the role of the Arabidopsis microtubule associated proteins 65‐1 and 65‐2 (MAP65‐1 and MAP65‐2) in the control of axial root growth. Transgenic plants expressing fluorescent fusion proteins from native promoters indicated exactly overlapping accumulation of MAP65‐1 and MAP65‐2 in the root tip and elongation zone. Nearly identical protein accumulation patterns were observed when MAP65‐1 and MAP65‐2 were expressed behind a constitutive CaMV 35S promoter, suggesting a level of post‐transcriptional control that restricts these proteins to rapidly growing portions of the root. Co‐expression of MAP65‐1 and MAP65‐2 fusion proteins showed precise co‐localization to interphase and cytokinetic microtubule arrays. In interphase root tip cells, the fluorescent protein fusions labeled microtubules that were organized into a variety of different array patterns. In the rapidly growing cells of the root elongation zone, we found MAP65‐1 and MAP65‐2 co‐localized exclusively to the lateral faces of cells that were axially extending. Genetic analysis showed that MAP65‐1 and MAP65‐2 are coordinately required for proper root elongation. Double map65‐1‐1 map65‐2‐2 mutant roots from dark‐grown plants contained 50% fewer cells per file than wild‐type roots, but we found no evidence that cytokinesis was disrupted. We additionally discovered that cell length was significantly shorter in the mature regions of the root beyond the zone where MAP65‐1 and MAP65‐2 accumulated. Our data indicate that MAP65‐1 and MAP65‐2 play a critical role in root growth by promoting cell proliferation and axial extension.</description><subject>Arabidopsis</subject><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cell Proliferation</subject><subject>Cell Size</subject><subject>Cellular biology</subject><subject>cytokinesis</subject><subject>elongation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Interphase</subject><subject>MAP65</subject><subject>Meristem - cytology</subject><subject>Meristem - genetics</subject><subject>Meristem - growth & development</subject><subject>Meristem - physiology</subject><subject>Microscopy, Fluorescence</subject><subject>microtubule organization</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubules - metabolism</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Plant growth</subject><subject>Plant physiology and development</subject><subject>Plants, Genetically Modified</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins</subject><subject>root growth</subject><subject>roots</subject><subject>Transgenic plants</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMFu1DAQhi1ERZeFV4BICIlLwtiOnfjAYVUBBbWiEq3UmzVJ7OJVNl7srLq98Qg8I09Sp7sLEgeEL-PRfP_Mr5-QjEJB03u7LCiXIueUbwsGlBUgAFixfURmh8H1YzIDJSGvSsqOydMYlwC04rJ8Qo4ZK0vOajUj1-eLCyl-_fhJMxy67NCxbB38yo8ma03fT03vrAk4Oj88gLh12Gc3wd-O3zI3ZIuAjev8OrqYBe_H-IwcWeyjeb6vc3L14f3lyWl-9uXjp5PFWd7KUrLcWi6gamVHO1TSNg0yVA3WHTWWMyOlsSgBusrUvDaGMmR1LRpglWqEkZTPyZvd3uTx-8bEUa9cnEzjYPwmagocoFJKioS--gtd-k0YkrtEpYW1Ekwlqt5RbfAxBmP1OrgVhrsE6Sl9vdRTyHoKWU_p64f09TZJX-wPbJqV6X4LD3En4PUewNhibwMOrYt_OEkFiMTOybsdd-t6c_ffBvTlxefpl_Qvd3qLXuNNSDeuviayBACuoKL_JBjUnPF7gO2yPA</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Lucas, Jessica R</creator><creator>Shaw, Sidney L</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201208</creationdate><title>MAP65‐1 and MAP65‐2 promote cell proliferation and axial growth in Arabidopsis roots</title><author>Lucas, Jessica R ; Shaw, Sidney L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6462-ff3507c6d1da96fbba2a9ba8d1ef32e66efa600d7e838ee12a2885b0279b5e613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cell Proliferation</topic><topic>Cell Size</topic><topic>Cellular biology</topic><topic>cytokinesis</topic><topic>elongation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Interphase</topic><topic>MAP65</topic><topic>Meristem - cytology</topic><topic>Meristem - genetics</topic><topic>Meristem - growth & development</topic><topic>Meristem - physiology</topic><topic>Microscopy, Fluorescence</topic><topic>microtubule organization</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubules - metabolism</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Plant growth</topic><topic>Plant physiology and development</topic><topic>Plants, Genetically Modified</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins</topic><topic>root growth</topic><topic>roots</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucas, Jessica R</creatorcontrib><creatorcontrib>Shaw, Sidney L</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucas, Jessica R</au><au>Shaw, Sidney L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MAP65‐1 and MAP65‐2 promote cell proliferation and axial growth in Arabidopsis roots</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2012-08</date><risdate>2012</risdate><volume>71</volume><issue>3</issue><spage>454</spage><epage>463</epage><pages>454-463</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>We investigated the role of the Arabidopsis microtubule associated proteins 65‐1 and 65‐2 (MAP65‐1 and MAP65‐2) in the control of axial root growth. Transgenic plants expressing fluorescent fusion proteins from native promoters indicated exactly overlapping accumulation of MAP65‐1 and MAP65‐2 in the root tip and elongation zone. Nearly identical protein accumulation patterns were observed when MAP65‐1 and MAP65‐2 were expressed behind a constitutive CaMV 35S promoter, suggesting a level of post‐transcriptional control that restricts these proteins to rapidly growing portions of the root. Co‐expression of MAP65‐1 and MAP65‐2 fusion proteins showed precise co‐localization to interphase and cytokinetic microtubule arrays. In interphase root tip cells, the fluorescent protein fusions labeled microtubules that were organized into a variety of different array patterns. In the rapidly growing cells of the root elongation zone, we found MAP65‐1 and MAP65‐2 co‐localized exclusively to the lateral faces of cells that were axially extending. Genetic analysis showed that MAP65‐1 and MAP65‐2 are coordinately required for proper root elongation. Double map65‐1‐1 map65‐2‐2 mutant roots from dark‐grown plants contained 50% fewer cells per file than wild‐type roots, but we found no evidence that cytokinesis was disrupted. We additionally discovered that cell length was significantly shorter in the mature regions of the root beyond the zone where MAP65‐1 and MAP65‐2 accumulated. Our data indicate that MAP65‐1 and MAP65‐2 play a critical role in root growth by promoting cell proliferation and axial extension.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22443289</pmid><doi>10.1111/j.1365-313x.2012.05002.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2012-08, Vol.71 (3), p.454-463 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_1030079965 |
source | MEDLINE; Wiley Journals; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Arabidopsis Arabidopsis - cytology Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - physiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Biological and medical sciences Cell Proliferation Cell Size Cellular biology cytokinesis elongation Fundamental and applied biological sciences. Psychology Gene Expression Gene Expression Regulation, Plant - physiology Interphase MAP65 Meristem - cytology Meristem - genetics Meristem - growth & development Meristem - physiology Microscopy, Fluorescence microtubule organization Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism Microtubules - metabolism Mutation Phenotype Plant growth Plant physiology and development Plants, Genetically Modified Proteins Recombinant Fusion Proteins root growth roots Transgenic plants |
title | MAP65‐1 and MAP65‐2 promote cell proliferation and axial growth in Arabidopsis roots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MAP65%E2%80%901%20and%20MAP65%E2%80%902%20promote%20cell%20proliferation%20and%20axial%20growth%20in%20Arabidopsis%20roots&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Lucas,%20Jessica%20R&rft.date=2012-08&rft.volume=71&rft.issue=3&rft.spage=454&rft.epage=463&rft.pages=454-463&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313x.2012.05002.x&rft_dat=%3Cproquest_cross%3E2721715061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027989529&rft_id=info:pmid/22443289&rfr_iscdi=true |