MAP65‐1 and MAP65‐2 promote cell proliferation and axial growth in Arabidopsis roots

We investigated the role of the Arabidopsis microtubule associated proteins 65‐1 and 65‐2 (MAP65‐1 and MAP65‐2) in the control of axial root growth. Transgenic plants expressing fluorescent fusion proteins from native promoters indicated exactly overlapping accumulation of MAP65‐1 and MAP65‐2 in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2012-08, Vol.71 (3), p.454-463
Hauptverfasser: Lucas, Jessica R, Shaw, Sidney L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 463
container_issue 3
container_start_page 454
container_title The Plant journal : for cell and molecular biology
container_volume 71
creator Lucas, Jessica R
Shaw, Sidney L
description We investigated the role of the Arabidopsis microtubule associated proteins 65‐1 and 65‐2 (MAP65‐1 and MAP65‐2) in the control of axial root growth. Transgenic plants expressing fluorescent fusion proteins from native promoters indicated exactly overlapping accumulation of MAP65‐1 and MAP65‐2 in the root tip and elongation zone. Nearly identical protein accumulation patterns were observed when MAP65‐1 and MAP65‐2 were expressed behind a constitutive CaMV 35S promoter, suggesting a level of post‐transcriptional control that restricts these proteins to rapidly growing portions of the root. Co‐expression of MAP65‐1 and MAP65‐2 fusion proteins showed precise co‐localization to interphase and cytokinetic microtubule arrays. In interphase root tip cells, the fluorescent protein fusions labeled microtubules that were organized into a variety of different array patterns. In the rapidly growing cells of the root elongation zone, we found MAP65‐1 and MAP65‐2 co‐localized exclusively to the lateral faces of cells that were axially extending. Genetic analysis showed that MAP65‐1 and MAP65‐2 are coordinately required for proper root elongation. Double map65‐1‐1 map65‐2‐2 mutant roots from dark‐grown plants contained 50% fewer cells per file than wild‐type roots, but we found no evidence that cytokinesis was disrupted. We additionally discovered that cell length was significantly shorter in the mature regions of the root beyond the zone where MAP65‐1 and MAP65‐2 accumulated. Our data indicate that MAP65‐1 and MAP65‐2 play a critical role in root growth by promoting cell proliferation and axial extension.
doi_str_mv 10.1111/j.1365-313x.2012.05002.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1030079965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721715061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6462-ff3507c6d1da96fbba2a9ba8d1ef32e66efa600d7e838ee12a2885b0279b5e613</originalsourceid><addsrcrecordid>eNqNkMFu1DAQhi1ERZeFV4BICIlLwtiOnfjAYVUBBbWiEq3UmzVJ7OJVNl7srLq98Qg8I09Sp7sLEgeEL-PRfP_Mr5-QjEJB03u7LCiXIueUbwsGlBUgAFixfURmh8H1YzIDJSGvSsqOydMYlwC04rJ8Qo4ZK0vOajUj1-eLCyl-_fhJMxy67NCxbB38yo8ma03fT03vrAk4Oj88gLh12Gc3wd-O3zI3ZIuAjev8OrqYBe_H-IwcWeyjeb6vc3L14f3lyWl-9uXjp5PFWd7KUrLcWi6gamVHO1TSNg0yVA3WHTWWMyOlsSgBusrUvDaGMmR1LRpglWqEkZTPyZvd3uTx-8bEUa9cnEzjYPwmagocoFJKioS--gtd-k0YkrtEpYW1Ekwlqt5RbfAxBmP1OrgVhrsE6Sl9vdRTyHoKWU_p64f09TZJX-wPbJqV6X4LD3En4PUewNhibwMOrYt_OEkFiMTOybsdd-t6c_ffBvTlxefpl_Qvd3qLXuNNSDeuviayBACuoKL_JBjUnPF7gO2yPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027989529</pqid></control><display><type>article</type><title>MAP65‐1 and MAP65‐2 promote cell proliferation and axial growth in Arabidopsis roots</title><source>MEDLINE</source><source>Wiley Journals</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Lucas, Jessica R ; Shaw, Sidney L</creator><creatorcontrib>Lucas, Jessica R ; Shaw, Sidney L</creatorcontrib><description>We investigated the role of the Arabidopsis microtubule associated proteins 65‐1 and 65‐2 (MAP65‐1 and MAP65‐2) in the control of axial root growth. Transgenic plants expressing fluorescent fusion proteins from native promoters indicated exactly overlapping accumulation of MAP65‐1 and MAP65‐2 in the root tip and elongation zone. Nearly identical protein accumulation patterns were observed when MAP65‐1 and MAP65‐2 were expressed behind a constitutive CaMV 35S promoter, suggesting a level of post‐transcriptional control that restricts these proteins to rapidly growing portions of the root. Co‐expression of MAP65‐1 and MAP65‐2 fusion proteins showed precise co‐localization to interphase and cytokinetic microtubule arrays. In interphase root tip cells, the fluorescent protein fusions labeled microtubules that were organized into a variety of different array patterns. In the rapidly growing cells of the root elongation zone, we found MAP65‐1 and MAP65‐2 co‐localized exclusively to the lateral faces of cells that were axially extending. Genetic analysis showed that MAP65‐1 and MAP65‐2 are coordinately required for proper root elongation. Double map65‐1‐1 map65‐2‐2 mutant roots from dark‐grown plants contained 50% fewer cells per file than wild‐type roots, but we found no evidence that cytokinesis was disrupted. We additionally discovered that cell length was significantly shorter in the mature regions of the root beyond the zone where MAP65‐1 and MAP65‐2 accumulated. Our data indicate that MAP65‐1 and MAP65‐2 play a critical role in root growth by promoting cell proliferation and axial extension.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313x.2012.05002.x</identifier><identifier>PMID: 22443289</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Arabidopsis ; Arabidopsis - cytology ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biological and medical sciences ; Cell Proliferation ; Cell Size ; Cellular biology ; cytokinesis ; elongation ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Expression Regulation, Plant - physiology ; Interphase ; MAP65 ; Meristem - cytology ; Meristem - genetics ; Meristem - growth &amp; development ; Meristem - physiology ; Microscopy, Fluorescence ; microtubule organization ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Microtubules - metabolism ; Mutation ; Phenotype ; Plant growth ; Plant physiology and development ; Plants, Genetically Modified ; Proteins ; Recombinant Fusion Proteins ; root growth ; roots ; Transgenic plants</subject><ispartof>The Plant journal : for cell and molecular biology, 2012-08, Vol.71 (3), p.454-463</ispartof><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6462-ff3507c6d1da96fbba2a9ba8d1ef32e66efa600d7e838ee12a2885b0279b5e613</citedby><cites>FETCH-LOGICAL-c6462-ff3507c6d1da96fbba2a9ba8d1ef32e66efa600d7e838ee12a2885b0279b5e613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2012.05002.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2012.05002.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26150544$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22443289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucas, Jessica R</creatorcontrib><creatorcontrib>Shaw, Sidney L</creatorcontrib><title>MAP65‐1 and MAP65‐2 promote cell proliferation and axial growth in Arabidopsis roots</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>We investigated the role of the Arabidopsis microtubule associated proteins 65‐1 and 65‐2 (MAP65‐1 and MAP65‐2) in the control of axial root growth. Transgenic plants expressing fluorescent fusion proteins from native promoters indicated exactly overlapping accumulation of MAP65‐1 and MAP65‐2 in the root tip and elongation zone. Nearly identical protein accumulation patterns were observed when MAP65‐1 and MAP65‐2 were expressed behind a constitutive CaMV 35S promoter, suggesting a level of post‐transcriptional control that restricts these proteins to rapidly growing portions of the root. Co‐expression of MAP65‐1 and MAP65‐2 fusion proteins showed precise co‐localization to interphase and cytokinetic microtubule arrays. In interphase root tip cells, the fluorescent protein fusions labeled microtubules that were organized into a variety of different array patterns. In the rapidly growing cells of the root elongation zone, we found MAP65‐1 and MAP65‐2 co‐localized exclusively to the lateral faces of cells that were axially extending. Genetic analysis showed that MAP65‐1 and MAP65‐2 are coordinately required for proper root elongation. Double map65‐1‐1 map65‐2‐2 mutant roots from dark‐grown plants contained 50% fewer cells per file than wild‐type roots, but we found no evidence that cytokinesis was disrupted. We additionally discovered that cell length was significantly shorter in the mature regions of the root beyond the zone where MAP65‐1 and MAP65‐2 accumulated. Our data indicate that MAP65‐1 and MAP65‐2 play a critical role in root growth by promoting cell proliferation and axial extension.</description><subject>Arabidopsis</subject><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cell Proliferation</subject><subject>Cell Size</subject><subject>Cellular biology</subject><subject>cytokinesis</subject><subject>elongation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Interphase</subject><subject>MAP65</subject><subject>Meristem - cytology</subject><subject>Meristem - genetics</subject><subject>Meristem - growth &amp; development</subject><subject>Meristem - physiology</subject><subject>Microscopy, Fluorescence</subject><subject>microtubule organization</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubules - metabolism</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Plant growth</subject><subject>Plant physiology and development</subject><subject>Plants, Genetically Modified</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins</subject><subject>root growth</subject><subject>roots</subject><subject>Transgenic plants</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMFu1DAQhi1ERZeFV4BICIlLwtiOnfjAYVUBBbWiEq3UmzVJ7OJVNl7srLq98Qg8I09Sp7sLEgeEL-PRfP_Mr5-QjEJB03u7LCiXIueUbwsGlBUgAFixfURmh8H1YzIDJSGvSsqOydMYlwC04rJ8Qo4ZK0vOajUj1-eLCyl-_fhJMxy67NCxbB38yo8ma03fT03vrAk4Oj88gLh12Gc3wd-O3zI3ZIuAjev8OrqYBe_H-IwcWeyjeb6vc3L14f3lyWl-9uXjp5PFWd7KUrLcWi6gamVHO1TSNg0yVA3WHTWWMyOlsSgBusrUvDaGMmR1LRpglWqEkZTPyZvd3uTx-8bEUa9cnEzjYPwmagocoFJKioS--gtd-k0YkrtEpYW1Ekwlqt5RbfAxBmP1OrgVhrsE6Sl9vdRTyHoKWU_p64f09TZJX-wPbJqV6X4LD3En4PUewNhibwMOrYt_OEkFiMTOybsdd-t6c_ffBvTlxefpl_Qvd3qLXuNNSDeuviayBACuoKL_JBjUnPF7gO2yPA</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Lucas, Jessica R</creator><creator>Shaw, Sidney L</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201208</creationdate><title>MAP65‐1 and MAP65‐2 promote cell proliferation and axial growth in Arabidopsis roots</title><author>Lucas, Jessica R ; Shaw, Sidney L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6462-ff3507c6d1da96fbba2a9ba8d1ef32e66efa600d7e838ee12a2885b0279b5e613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cell Proliferation</topic><topic>Cell Size</topic><topic>Cellular biology</topic><topic>cytokinesis</topic><topic>elongation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Interphase</topic><topic>MAP65</topic><topic>Meristem - cytology</topic><topic>Meristem - genetics</topic><topic>Meristem - growth &amp; development</topic><topic>Meristem - physiology</topic><topic>Microscopy, Fluorescence</topic><topic>microtubule organization</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubules - metabolism</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Plant growth</topic><topic>Plant physiology and development</topic><topic>Plants, Genetically Modified</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins</topic><topic>root growth</topic><topic>roots</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucas, Jessica R</creatorcontrib><creatorcontrib>Shaw, Sidney L</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucas, Jessica R</au><au>Shaw, Sidney L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MAP65‐1 and MAP65‐2 promote cell proliferation and axial growth in Arabidopsis roots</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2012-08</date><risdate>2012</risdate><volume>71</volume><issue>3</issue><spage>454</spage><epage>463</epage><pages>454-463</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>We investigated the role of the Arabidopsis microtubule associated proteins 65‐1 and 65‐2 (MAP65‐1 and MAP65‐2) in the control of axial root growth. Transgenic plants expressing fluorescent fusion proteins from native promoters indicated exactly overlapping accumulation of MAP65‐1 and MAP65‐2 in the root tip and elongation zone. Nearly identical protein accumulation patterns were observed when MAP65‐1 and MAP65‐2 were expressed behind a constitutive CaMV 35S promoter, suggesting a level of post‐transcriptional control that restricts these proteins to rapidly growing portions of the root. Co‐expression of MAP65‐1 and MAP65‐2 fusion proteins showed precise co‐localization to interphase and cytokinetic microtubule arrays. In interphase root tip cells, the fluorescent protein fusions labeled microtubules that were organized into a variety of different array patterns. In the rapidly growing cells of the root elongation zone, we found MAP65‐1 and MAP65‐2 co‐localized exclusively to the lateral faces of cells that were axially extending. Genetic analysis showed that MAP65‐1 and MAP65‐2 are coordinately required for proper root elongation. Double map65‐1‐1 map65‐2‐2 mutant roots from dark‐grown plants contained 50% fewer cells per file than wild‐type roots, but we found no evidence that cytokinesis was disrupted. We additionally discovered that cell length was significantly shorter in the mature regions of the root beyond the zone where MAP65‐1 and MAP65‐2 accumulated. Our data indicate that MAP65‐1 and MAP65‐2 play a critical role in root growth by promoting cell proliferation and axial extension.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22443289</pmid><doi>10.1111/j.1365-313x.2012.05002.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2012-08, Vol.71 (3), p.454-463
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_1030079965
source MEDLINE; Wiley Journals; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Arabidopsis
Arabidopsis - cytology
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biological and medical sciences
Cell Proliferation
Cell Size
Cellular biology
cytokinesis
elongation
Fundamental and applied biological sciences. Psychology
Gene Expression
Gene Expression Regulation, Plant - physiology
Interphase
MAP65
Meristem - cytology
Meristem - genetics
Meristem - growth & development
Meristem - physiology
Microscopy, Fluorescence
microtubule organization
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
Microtubules - metabolism
Mutation
Phenotype
Plant growth
Plant physiology and development
Plants, Genetically Modified
Proteins
Recombinant Fusion Proteins
root growth
roots
Transgenic plants
title MAP65‐1 and MAP65‐2 promote cell proliferation and axial growth in Arabidopsis roots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MAP65%E2%80%901%20and%20MAP65%E2%80%902%20promote%20cell%20proliferation%20and%20axial%20growth%20in%20Arabidopsis%20roots&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Lucas,%20Jessica%20R&rft.date=2012-08&rft.volume=71&rft.issue=3&rft.spage=454&rft.epage=463&rft.pages=454-463&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313x.2012.05002.x&rft_dat=%3Cproquest_cross%3E2721715061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027989529&rft_id=info:pmid/22443289&rfr_iscdi=true