The fingerprint of chemosymbiosis: origin and preservation of isotopic biosignatures in the nonseep bivalve Loripes lacteus compared with Venerupis aurea

Abstract Endosymbionts in marine bivalves leave characteristic biosignatures in their host organisms. Two nonseep bivalve species collected in Mediterranean lagoons, thiotrophic symbiotic Loripes lacteus and filter-feeding nonsymbiotic Venerupis aurea, were studied in detail with respect to generati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS microbiology ecology 2012-08, Vol.81 (2), p.480-493
Hauptverfasser: Dreier, Anne, Stannek, Lorena, Blumenberg, Martin, Taviani, Marco, Sigovini, Marco, Wrede, Christoph, Thiel, Volker, Hoppert, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 493
container_issue 2
container_start_page 480
container_title FEMS microbiology ecology
container_volume 81
creator Dreier, Anne
Stannek, Lorena
Blumenberg, Martin
Taviani, Marco
Sigovini, Marco
Wrede, Christoph
Thiel, Volker
Hoppert, Michael
description Abstract Endosymbionts in marine bivalves leave characteristic biosignatures in their host organisms. Two nonseep bivalve species collected in Mediterranean lagoons, thiotrophic symbiotic Loripes lacteus and filter-feeding nonsymbiotic Venerupis aurea, were studied in detail with respect to generation and presence of such signatures in living animals, and the preservation of these signals in subfossil (late Pleistocene) sedimentary shells. Three key enzymes from sulfur oxidation (APS-reductase), CO2 fixation (RubisCO) and assimilation of nitrogen [glutamine synthetase (GS)] were detected by immunofluorescence in the bacterial symbionts of Loripes. In Loripes, major activity was derived from GS of the symbionts whereas in Venerupis the host GS is active. In search of geologically stable biosignatures for thiotrophic chemosymbiosis that might be suitable to detect such associations in ancient bivalves, we analyzed the isotopic composition of shell lipids (δ 13C) and the bulk organic matrix of the shell (δ 13C, δ 15N, δ 34S). In the thiotrophic Loripes, δ 13C values were depleted compared with the filter-feeding Venerupis by as much as 8.5‰ for individual fatty acids, and 4.4‰ for bulk organic carbon. Likewise, bulk δ 15N and δ 34S values were more depleted in recent thiotrophic Loripes. Whereas δ 34S values were found to be unstable over time, the combined δ 15N and δ 13C values in organic shell extracts revealed a specific signature for chemosymbiosis in recent and subfossil specimens.
doi_str_mv 10.1111/j.1574-6941.2012.01374.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1028033851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1574-6941.2012.01374.x</oup_id><sourcerecordid>1028033851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5544-9062f4a727a57d1743bc6f5a8c97e25545df8cd033ba0290b5348c64be0375863</originalsourceid><addsrcrecordid>eNqNkdGK1DAUhoso7rj6ChIQwZvWpE2aVvBCll0VRrxZvQ1pejqToU1q0s7uPIpv6-nOuIIibG4SON__n3PyJwlhNGN43u4yJiRPy5qzLKcszygrJM9uHyWr-8LjZEVZWaUlr8uz5FmMO0qZKDh9mpzlORcVF2yV_LzeAums20AYg3UT8R0xWxh8PAyN9dHGd8QHu7GOaNeSMUCEsNeT9W5BbfSTH60hd-zG6WlGgiA9oa_zLgKMWNzrfg9kjU4jlnttJpgjMX4YdYCW3NhpS76DgzCPNhKNJvp58qTTfYQXp_s8-XZ1eX3xKV1__fj54sM6NUJwnta0zDuuZS61kC2TvGhM2QldmVpCjohou8q0tCgaTfOaNvgFlSl5A7SQoiqL8-TN0XcM_scMcVKDjQb6Xjvwc1SM5hWqK8EegnIuZVFJRF_9he78HBwuophgssBBWY1UdaRM8DEG6BSGMOhwQCu1JK12aglULYGqJWl1l7S6RenLU4O5GaC9F_6OFoHXJ0BHo_suaGds_MOVDNFy2f_9kbuxPRwePIC6uvyyvFBfHPV-Hv-jTv8d_xd9utSa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517317419</pqid></control><display><type>article</type><title>The fingerprint of chemosymbiosis: origin and preservation of isotopic biosignatures in the nonseep bivalve Loripes lacteus compared with Venerupis aurea</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><creator>Dreier, Anne ; Stannek, Lorena ; Blumenberg, Martin ; Taviani, Marco ; Sigovini, Marco ; Wrede, Christoph ; Thiel, Volker ; Hoppert, Michael</creator><creatorcontrib>Dreier, Anne ; Stannek, Lorena ; Blumenberg, Martin ; Taviani, Marco ; Sigovini, Marco ; Wrede, Christoph ; Thiel, Volker ; Hoppert, Michael</creatorcontrib><description>Abstract Endosymbionts in marine bivalves leave characteristic biosignatures in their host organisms. Two nonseep bivalve species collected in Mediterranean lagoons, thiotrophic symbiotic Loripes lacteus and filter-feeding nonsymbiotic Venerupis aurea, were studied in detail with respect to generation and presence of such signatures in living animals, and the preservation of these signals in subfossil (late Pleistocene) sedimentary shells. Three key enzymes from sulfur oxidation (APS-reductase), CO2 fixation (RubisCO) and assimilation of nitrogen [glutamine synthetase (GS)] were detected by immunofluorescence in the bacterial symbionts of Loripes. In Loripes, major activity was derived from GS of the symbionts whereas in Venerupis the host GS is active. In search of geologically stable biosignatures for thiotrophic chemosymbiosis that might be suitable to detect such associations in ancient bivalves, we analyzed the isotopic composition of shell lipids (δ 13C) and the bulk organic matrix of the shell (δ 13C, δ 15N, δ 34S). In the thiotrophic Loripes, δ 13C values were depleted compared with the filter-feeding Venerupis by as much as 8.5‰ for individual fatty acids, and 4.4‰ for bulk organic carbon. Likewise, bulk δ 15N and δ 34S values were more depleted in recent thiotrophic Loripes. Whereas δ 34S values were found to be unstable over time, the combined δ 15N and δ 13C values in organic shell extracts revealed a specific signature for chemosymbiosis in recent and subfossil specimens.</description><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1111/j.1574-6941.2012.01374.x</identifier><identifier>PMID: 22458451</identifier><identifier>CODEN: FMECEZ</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animal Shells - chemistry ; Animal, plant and microbial ecology ; Animals ; Bacteria - enzymology ; Bacteria - genetics ; Biological and medical sciences ; biosignatures ; Bivalvia ; Bivalvia - chemistry ; Bivalvia - microbiology ; Carbon Cycle ; Carbon dioxide fixation ; Carbon Isotopes - analysis ; Ecology ; endosymbiosis ; Fossils ; Fundamental and applied biological sciences. Psychology ; Glutamate-Ammonia Ligase - analysis ; Lagoons ; Lipids ; Loripes ; Loripes lacteus ; Marine ; Microbial ecology ; Microbiology ; Mollusks ; Nitrogen - chemistry ; Nitrogen Isotopes - analysis ; Organic carbon ; Oxidation-Reduction ; Oxidoreductases Acting on Sulfur Group Donors - analysis ; Pleistocene ; Preservation ; Ribulose-Bisphosphate Carboxylase - analysis ; RNA, Ribosomal, 16S - genetics ; Shellfish ; Shells ; stable isotope ratios ; Sulfur ; Sulfur - analysis ; Sulfur Isotopes - analysis ; Symbiosis ; thiotrophic bivalves ; Various environments (extraatmospheric space, air, water) ; Venerupis ; Venerupis aurea</subject><ispartof>FEMS microbiology ecology, 2012-08, Vol.81 (2), p.480-493</ispartof><rights>2012 Federation of European Microbiological Societies 2012</rights><rights>2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><rights>2015 INIST-CNRS</rights><rights>2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.</rights><rights>Copyright © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5544-9062f4a727a57d1743bc6f5a8c97e25545df8cd033ba0290b5348c64be0375863</citedby><cites>FETCH-LOGICAL-c5544-9062f4a727a57d1743bc6f5a8c97e25545df8cd033ba0290b5348c64be0375863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1574-6941.2012.01374.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1574-6941.2012.01374.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26122466$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22458451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dreier, Anne</creatorcontrib><creatorcontrib>Stannek, Lorena</creatorcontrib><creatorcontrib>Blumenberg, Martin</creatorcontrib><creatorcontrib>Taviani, Marco</creatorcontrib><creatorcontrib>Sigovini, Marco</creatorcontrib><creatorcontrib>Wrede, Christoph</creatorcontrib><creatorcontrib>Thiel, Volker</creatorcontrib><creatorcontrib>Hoppert, Michael</creatorcontrib><title>The fingerprint of chemosymbiosis: origin and preservation of isotopic biosignatures in the nonseep bivalve Loripes lacteus compared with Venerupis aurea</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>Abstract Endosymbionts in marine bivalves leave characteristic biosignatures in their host organisms. Two nonseep bivalve species collected in Mediterranean lagoons, thiotrophic symbiotic Loripes lacteus and filter-feeding nonsymbiotic Venerupis aurea, were studied in detail with respect to generation and presence of such signatures in living animals, and the preservation of these signals in subfossil (late Pleistocene) sedimentary shells. Three key enzymes from sulfur oxidation (APS-reductase), CO2 fixation (RubisCO) and assimilation of nitrogen [glutamine synthetase (GS)] were detected by immunofluorescence in the bacterial symbionts of Loripes. In Loripes, major activity was derived from GS of the symbionts whereas in Venerupis the host GS is active. In search of geologically stable biosignatures for thiotrophic chemosymbiosis that might be suitable to detect such associations in ancient bivalves, we analyzed the isotopic composition of shell lipids (δ 13C) and the bulk organic matrix of the shell (δ 13C, δ 15N, δ 34S). In the thiotrophic Loripes, δ 13C values were depleted compared with the filter-feeding Venerupis by as much as 8.5‰ for individual fatty acids, and 4.4‰ for bulk organic carbon. Likewise, bulk δ 15N and δ 34S values were more depleted in recent thiotrophic Loripes. Whereas δ 34S values were found to be unstable over time, the combined δ 15N and δ 13C values in organic shell extracts revealed a specific signature for chemosymbiosis in recent and subfossil specimens.</description><subject>Animal Shells - chemistry</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Biological and medical sciences</subject><subject>biosignatures</subject><subject>Bivalvia</subject><subject>Bivalvia - chemistry</subject><subject>Bivalvia - microbiology</subject><subject>Carbon Cycle</subject><subject>Carbon dioxide fixation</subject><subject>Carbon Isotopes - analysis</subject><subject>Ecology</subject><subject>endosymbiosis</subject><subject>Fossils</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glutamate-Ammonia Ligase - analysis</subject><subject>Lagoons</subject><subject>Lipids</subject><subject>Loripes</subject><subject>Loripes lacteus</subject><subject>Marine</subject><subject>Microbial ecology</subject><subject>Microbiology</subject><subject>Mollusks</subject><subject>Nitrogen - chemistry</subject><subject>Nitrogen Isotopes - analysis</subject><subject>Organic carbon</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases Acting on Sulfur Group Donors - analysis</subject><subject>Pleistocene</subject><subject>Preservation</subject><subject>Ribulose-Bisphosphate Carboxylase - analysis</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Shellfish</subject><subject>Shells</subject><subject>stable isotope ratios</subject><subject>Sulfur</subject><subject>Sulfur - analysis</subject><subject>Sulfur Isotopes - analysis</subject><subject>Symbiosis</subject><subject>thiotrophic bivalves</subject><subject>Various environments (extraatmospheric space, air, water)</subject><subject>Venerupis</subject><subject>Venerupis aurea</subject><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkdGK1DAUhoso7rj6ChIQwZvWpE2aVvBCll0VRrxZvQ1pejqToU1q0s7uPIpv6-nOuIIibG4SON__n3PyJwlhNGN43u4yJiRPy5qzLKcszygrJM9uHyWr-8LjZEVZWaUlr8uz5FmMO0qZKDh9mpzlORcVF2yV_LzeAums20AYg3UT8R0xWxh8PAyN9dHGd8QHu7GOaNeSMUCEsNeT9W5BbfSTH60hd-zG6WlGgiA9oa_zLgKMWNzrfg9kjU4jlnttJpgjMX4YdYCW3NhpS76DgzCPNhKNJvp58qTTfYQXp_s8-XZ1eX3xKV1__fj54sM6NUJwnta0zDuuZS61kC2TvGhM2QldmVpCjohou8q0tCgaTfOaNvgFlSl5A7SQoiqL8-TN0XcM_scMcVKDjQb6Xjvwc1SM5hWqK8EegnIuZVFJRF_9he78HBwuophgssBBWY1UdaRM8DEG6BSGMOhwQCu1JK12aglULYGqJWl1l7S6RenLU4O5GaC9F_6OFoHXJ0BHo_suaGds_MOVDNFy2f_9kbuxPRwePIC6uvyyvFBfHPV-Hv-jTv8d_xd9utSa</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Dreier, Anne</creator><creator>Stannek, Lorena</creator><creator>Blumenberg, Martin</creator><creator>Taviani, Marco</creator><creator>Sigovini, Marco</creator><creator>Wrede, Christoph</creator><creator>Thiel, Volker</creator><creator>Hoppert, Michael</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7TN</scope><scope>7UA</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>201208</creationdate><title>The fingerprint of chemosymbiosis: origin and preservation of isotopic biosignatures in the nonseep bivalve Loripes lacteus compared with Venerupis aurea</title><author>Dreier, Anne ; Stannek, Lorena ; Blumenberg, Martin ; Taviani, Marco ; Sigovini, Marco ; Wrede, Christoph ; Thiel, Volker ; Hoppert, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5544-9062f4a727a57d1743bc6f5a8c97e25545df8cd033ba0290b5348c64be0375863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animal Shells - chemistry</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Biological and medical sciences</topic><topic>biosignatures</topic><topic>Bivalvia</topic><topic>Bivalvia - chemistry</topic><topic>Bivalvia - microbiology</topic><topic>Carbon Cycle</topic><topic>Carbon dioxide fixation</topic><topic>Carbon Isotopes - analysis</topic><topic>Ecology</topic><topic>endosymbiosis</topic><topic>Fossils</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glutamate-Ammonia Ligase - analysis</topic><topic>Lagoons</topic><topic>Lipids</topic><topic>Loripes</topic><topic>Loripes lacteus</topic><topic>Marine</topic><topic>Microbial ecology</topic><topic>Microbiology</topic><topic>Mollusks</topic><topic>Nitrogen - chemistry</topic><topic>Nitrogen Isotopes - analysis</topic><topic>Organic carbon</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases Acting on Sulfur Group Donors - analysis</topic><topic>Pleistocene</topic><topic>Preservation</topic><topic>Ribulose-Bisphosphate Carboxylase - analysis</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Shellfish</topic><topic>Shells</topic><topic>stable isotope ratios</topic><topic>Sulfur</topic><topic>Sulfur - analysis</topic><topic>Sulfur Isotopes - analysis</topic><topic>Symbiosis</topic><topic>thiotrophic bivalves</topic><topic>Various environments (extraatmospheric space, air, water)</topic><topic>Venerupis</topic><topic>Venerupis aurea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dreier, Anne</creatorcontrib><creatorcontrib>Stannek, Lorena</creatorcontrib><creatorcontrib>Blumenberg, Martin</creatorcontrib><creatorcontrib>Taviani, Marco</creatorcontrib><creatorcontrib>Sigovini, Marco</creatorcontrib><creatorcontrib>Wrede, Christoph</creatorcontrib><creatorcontrib>Thiel, Volker</creatorcontrib><creatorcontrib>Hoppert, Michael</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dreier, Anne</au><au>Stannek, Lorena</au><au>Blumenberg, Martin</au><au>Taviani, Marco</au><au>Sigovini, Marco</au><au>Wrede, Christoph</au><au>Thiel, Volker</au><au>Hoppert, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The fingerprint of chemosymbiosis: origin and preservation of isotopic biosignatures in the nonseep bivalve Loripes lacteus compared with Venerupis aurea</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2012-08</date><risdate>2012</risdate><volume>81</volume><issue>2</issue><spage>480</spage><epage>493</epage><pages>480-493</pages><issn>0168-6496</issn><eissn>1574-6941</eissn><coden>FMECEZ</coden><abstract>Abstract Endosymbionts in marine bivalves leave characteristic biosignatures in their host organisms. Two nonseep bivalve species collected in Mediterranean lagoons, thiotrophic symbiotic Loripes lacteus and filter-feeding nonsymbiotic Venerupis aurea, were studied in detail with respect to generation and presence of such signatures in living animals, and the preservation of these signals in subfossil (late Pleistocene) sedimentary shells. Three key enzymes from sulfur oxidation (APS-reductase), CO2 fixation (RubisCO) and assimilation of nitrogen [glutamine synthetase (GS)] were detected by immunofluorescence in the bacterial symbionts of Loripes. In Loripes, major activity was derived from GS of the symbionts whereas in Venerupis the host GS is active. In search of geologically stable biosignatures for thiotrophic chemosymbiosis that might be suitable to detect such associations in ancient bivalves, we analyzed the isotopic composition of shell lipids (δ 13C) and the bulk organic matrix of the shell (δ 13C, δ 15N, δ 34S). In the thiotrophic Loripes, δ 13C values were depleted compared with the filter-feeding Venerupis by as much as 8.5‰ for individual fatty acids, and 4.4‰ for bulk organic carbon. Likewise, bulk δ 15N and δ 34S values were more depleted in recent thiotrophic Loripes. Whereas δ 34S values were found to be unstable over time, the combined δ 15N and δ 13C values in organic shell extracts revealed a specific signature for chemosymbiosis in recent and subfossil specimens.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22458451</pmid><doi>10.1111/j.1574-6941.2012.01374.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-6496
ispartof FEMS microbiology ecology, 2012-08, Vol.81 (2), p.480-493
issn 0168-6496
1574-6941
language eng
recordid cdi_proquest_miscellaneous_1028033851
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection
subjects Animal Shells - chemistry
Animal, plant and microbial ecology
Animals
Bacteria - enzymology
Bacteria - genetics
Biological and medical sciences
biosignatures
Bivalvia
Bivalvia - chemistry
Bivalvia - microbiology
Carbon Cycle
Carbon dioxide fixation
Carbon Isotopes - analysis
Ecology
endosymbiosis
Fossils
Fundamental and applied biological sciences. Psychology
Glutamate-Ammonia Ligase - analysis
Lagoons
Lipids
Loripes
Loripes lacteus
Marine
Microbial ecology
Microbiology
Mollusks
Nitrogen - chemistry
Nitrogen Isotopes - analysis
Organic carbon
Oxidation-Reduction
Oxidoreductases Acting on Sulfur Group Donors - analysis
Pleistocene
Preservation
Ribulose-Bisphosphate Carboxylase - analysis
RNA, Ribosomal, 16S - genetics
Shellfish
Shells
stable isotope ratios
Sulfur
Sulfur - analysis
Sulfur Isotopes - analysis
Symbiosis
thiotrophic bivalves
Various environments (extraatmospheric space, air, water)
Venerupis
Venerupis aurea
title The fingerprint of chemosymbiosis: origin and preservation of isotopic biosignatures in the nonseep bivalve Loripes lacteus compared with Venerupis aurea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20fingerprint%20of%20chemosymbiosis:%20origin%20and%20preservation%20of%20isotopic%20biosignatures%20in%20the%20nonseep%20bivalve%20Loripes%20lacteus%20compared%20with%20Venerupis%20aurea&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Dreier,%20Anne&rft.date=2012-08&rft.volume=81&rft.issue=2&rft.spage=480&rft.epage=493&rft.pages=480-493&rft.issn=0168-6496&rft.eissn=1574-6941&rft.coden=FMECEZ&rft_id=info:doi/10.1111/j.1574-6941.2012.01374.x&rft_dat=%3Cproquest_cross%3E1028033851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1517317419&rft_id=info:pmid/22458451&rft_oup_id=10.1111/j.1574-6941.2012.01374.x&rfr_iscdi=true