Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome
This study shows that the interaction between metabotropic glutamate receptor 5 (mGluR5) and a specific form of the scaffolding protein Homer contributes to the behavioral and physiological defects in the mouse model of fragile X syndrome. Enhanced metabotropic glutamate receptor subunit 5 (mGluR5)...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2012-03, Vol.15 (3), p.431-440 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 440 |
---|---|
container_issue | 3 |
container_start_page | 431 |
container_title | Nature neuroscience |
container_volume | 15 |
creator | Ronesi, Jennifer A Collins, Katie A Hays, Seth A Tsai, Nien-Pei Guo, Weirui Birnbaum, Shari G Hu, Jia-Hua Worley, Paul F Gibson, Jay R Huber, Kimberly M |
description | This study shows that the interaction between metabotropic glutamate receptor 5 (mGluR5) and a specific form of the scaffolding protein Homer contributes to the behavioral and physiological defects in the mouse model of fragile X syndrome.
Enhanced metabotropic glutamate receptor subunit 5 (mGluR5) function is causally associated with the pathophysiology of fragile X syndrome, a leading inherited cause of intellectual disability and autism. Here we provide evidence that altered mGluR5-Homer scaffolds contribute to mGluR5 dysfunction and phenotypes in the fragile X syndrome mouse model,
Fmr1
knockout (
Fmr1
−/
y
). In
Fmr1
−/
y
mice, mGluR5 was less associated with long Homer isoforms but more associated with the short Homer1a. Genetic deletion of Homer1a restored mGluR5–long Homer scaffolds and corrected several phenotypes in
Fmr1
−/
y
mice, including altered mGluR5 signaling, neocortical circuit dysfunction and behavior. Acute, peptide-mediated disruption of mGluR5-Homer scaffolds in wild-type mice mimicked many
Fmr1
−/
y
phenotypes. In contrast, Homer1a deletion did not rescue altered mGluR-dependent long-term synaptic depression or translational control of target mRNAs of fragile X mental retardation protein, the gene product of
Fmr1
. Our findings reveal new functions for mGluR5-Homer interactions in the brain and delineate distinct mechanisms of mGluR5 dysfunction in a mouse model of cognitive dysfunction and autism. |
doi_str_mv | 10.1038/nn.3033 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1028027665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A282325761</galeid><sourcerecordid>A282325761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-ab766133226988324c4f09ce0cdde58f4266181451c6136a65f421a37b15ec003</originalsourceid><addsrcrecordid>eNptkW9rFDEQxoMotp7iN5CAL6wv9syfTTb7stTaFgpCVfDdkstOjpRscia7YL-9c7RqTySQhMxvnjwzQ8hrztacSfMhpbVkUj4hx1y1uuGd0E_xzvqu0ULpI_Ki1lvGWKdM_5wcCSF0xzU_JvZjqGXZzTDSyzxBodVZ73McK51gDHYGajcpl8lGOl3E5UZRvyQ3h5xoSNTSKS8VcB8h0uypL3YbItDvtN6lsaDkS_LM21jh1cO5It8-nX89u2yuP19cnZ1eN04xMzd202nNpURnvTFStK71rHfA3DiCMr4VGDa8Vdwhpq1W-MSt7DZcgWNMrsjJve6u5B8L1HmYQnUQo02AHgfOhGECP1GIvv0Hvc1LSegOKdm3HeseU1sbYQjJ57lYtxcdToURUqgOnazI-j8UrhGm4HICj-04THh_kIDMDD_nrV1qHa6-3Byy7-5ZV3KtBfywK2Gy5Q597q2aIaVhP3gk3zyUtGxwcH-435P-256KobSF8rjmQ61fPiew8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039470765</pqid></control><display><type>article</type><title>Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Ronesi, Jennifer A ; Collins, Katie A ; Hays, Seth A ; Tsai, Nien-Pei ; Guo, Weirui ; Birnbaum, Shari G ; Hu, Jia-Hua ; Worley, Paul F ; Gibson, Jay R ; Huber, Kimberly M</creator><creatorcontrib>Ronesi, Jennifer A ; Collins, Katie A ; Hays, Seth A ; Tsai, Nien-Pei ; Guo, Weirui ; Birnbaum, Shari G ; Hu, Jia-Hua ; Worley, Paul F ; Gibson, Jay R ; Huber, Kimberly M</creatorcontrib><description>This study shows that the interaction between metabotropic glutamate receptor 5 (mGluR5) and a specific form of the scaffolding protein Homer contributes to the behavioral and physiological defects in the mouse model of fragile X syndrome.
Enhanced metabotropic glutamate receptor subunit 5 (mGluR5) function is causally associated with the pathophysiology of fragile X syndrome, a leading inherited cause of intellectual disability and autism. Here we provide evidence that altered mGluR5-Homer scaffolds contribute to mGluR5 dysfunction and phenotypes in the fragile X syndrome mouse model,
Fmr1
knockout (
Fmr1
−/
y
). In
Fmr1
−/
y
mice, mGluR5 was less associated with long Homer isoforms but more associated with the short Homer1a. Genetic deletion of Homer1a restored mGluR5–long Homer scaffolds and corrected several phenotypes in
Fmr1
−/
y
mice, including altered mGluR5 signaling, neocortical circuit dysfunction and behavior. Acute, peptide-mediated disruption of mGluR5-Homer scaffolds in wild-type mice mimicked many
Fmr1
−/
y
phenotypes. In contrast, Homer1a deletion did not rescue altered mGluR-dependent long-term synaptic depression or translational control of target mRNAs of fragile X mental retardation protein, the gene product of
Fmr1
. Our findings reveal new functions for mGluR5-Homer interactions in the brain and delineate distinct mechanisms of mGluR5 dysfunction in a mouse model of cognitive dysfunction and autism.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3033</identifier><identifier>PMID: 22267161</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/1689 ; 631/378/340 ; Analysis of Variance ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cycloheximide - pharmacology ; Disease Models, Animal ; Electric Stimulation - methods ; Exploratory Behavior - physiology ; Fragile X Mental Retardation Protein ; Fragile X syndrome ; Fragile X Syndrome - genetics ; Fragile X Syndrome - metabolism ; Fragile X Syndrome - pathology ; Fragile X Syndrome - physiopathology ; Gene Expression Regulation - genetics ; Gene Expression Regulation - physiology ; Gene mutations ; Genetic aspects ; Health aspects ; Hippocampus - pathology ; Hippocampus - physiopathology ; Homer Scaffolding Proteins ; Immunoprecipitation ; In Vitro Techniques ; Long-Term Potentiation - drug effects ; Long-Term Potentiation - genetics ; Methoxyhydroxyphenylglycol - analogs & derivatives ; Methoxyhydroxyphenylglycol - pharmacology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutation ; Nerve Net - drug effects ; Nerve Net - physiology ; Neurobiology ; Neurosciences ; Neurotransmitter receptors ; Patch-Clamp Techniques ; Peptides - pharmacology ; Physics ; Physiological aspects ; Protein Synthesis Inhibitors - pharmacology ; Rats ; Rats, Long-Evans ; Receptor, Metabotropic Glutamate 5 ; Receptors, Metabotropic Glutamate - chemistry ; Receptors, Metabotropic Glutamate - metabolism ; Risk factors ; Serine - metabolism ; Signal Transduction - drug effects ; Signal Transduction - genetics ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Nature neuroscience, 2012-03, Vol.15 (3), p.431-440</ispartof><rights>Springer Nature America, Inc. 2012</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-ab766133226988324c4f09ce0cdde58f4266181451c6136a65f421a37b15ec003</citedby><cites>FETCH-LOGICAL-c508t-ab766133226988324c4f09ce0cdde58f4266181451c6136a65f421a37b15ec003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3033$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3033$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22267161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ronesi, Jennifer A</creatorcontrib><creatorcontrib>Collins, Katie A</creatorcontrib><creatorcontrib>Hays, Seth A</creatorcontrib><creatorcontrib>Tsai, Nien-Pei</creatorcontrib><creatorcontrib>Guo, Weirui</creatorcontrib><creatorcontrib>Birnbaum, Shari G</creatorcontrib><creatorcontrib>Hu, Jia-Hua</creatorcontrib><creatorcontrib>Worley, Paul F</creatorcontrib><creatorcontrib>Gibson, Jay R</creatorcontrib><creatorcontrib>Huber, Kimberly M</creatorcontrib><title>Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>This study shows that the interaction between metabotropic glutamate receptor 5 (mGluR5) and a specific form of the scaffolding protein Homer contributes to the behavioral and physiological defects in the mouse model of fragile X syndrome.
Enhanced metabotropic glutamate receptor subunit 5 (mGluR5) function is causally associated with the pathophysiology of fragile X syndrome, a leading inherited cause of intellectual disability and autism. Here we provide evidence that altered mGluR5-Homer scaffolds contribute to mGluR5 dysfunction and phenotypes in the fragile X syndrome mouse model,
Fmr1
knockout (
Fmr1
−/
y
). In
Fmr1
−/
y
mice, mGluR5 was less associated with long Homer isoforms but more associated with the short Homer1a. Genetic deletion of Homer1a restored mGluR5–long Homer scaffolds and corrected several phenotypes in
Fmr1
−/
y
mice, including altered mGluR5 signaling, neocortical circuit dysfunction and behavior. Acute, peptide-mediated disruption of mGluR5-Homer scaffolds in wild-type mice mimicked many
Fmr1
−/
y
phenotypes. In contrast, Homer1a deletion did not rescue altered mGluR-dependent long-term synaptic depression or translational control of target mRNAs of fragile X mental retardation protein, the gene product of
Fmr1
. Our findings reveal new functions for mGluR5-Homer interactions in the brain and delineate distinct mechanisms of mGluR5 dysfunction in a mouse model of cognitive dysfunction and autism.</description><subject>631/378/1689</subject><subject>631/378/340</subject><subject>Analysis of Variance</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cycloheximide - pharmacology</subject><subject>Disease Models, Animal</subject><subject>Electric Stimulation - methods</subject><subject>Exploratory Behavior - physiology</subject><subject>Fragile X Mental Retardation Protein</subject><subject>Fragile X syndrome</subject><subject>Fragile X Syndrome - genetics</subject><subject>Fragile X Syndrome - metabolism</subject><subject>Fragile X Syndrome - pathology</subject><subject>Fragile X Syndrome - physiopathology</subject><subject>Gene Expression Regulation - genetics</subject><subject>Gene Expression Regulation - physiology</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Hippocampus - pathology</subject><subject>Hippocampus - physiopathology</subject><subject>Homer Scaffolding Proteins</subject><subject>Immunoprecipitation</subject><subject>In Vitro Techniques</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Long-Term Potentiation - genetics</subject><subject>Methoxyhydroxyphenylglycol - analogs & derivatives</subject><subject>Methoxyhydroxyphenylglycol - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Mutation</subject><subject>Nerve Net - drug effects</subject><subject>Nerve Net - physiology</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Neurotransmitter receptors</subject><subject>Patch-Clamp Techniques</subject><subject>Peptides - pharmacology</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Protein Synthesis Inhibitors - pharmacology</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Receptor, Metabotropic Glutamate 5</subject><subject>Receptors, Metabotropic Glutamate - chemistry</subject><subject>Receptors, Metabotropic Glutamate - metabolism</subject><subject>Risk factors</subject><subject>Serine - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkW9rFDEQxoMotp7iN5CAL6wv9syfTTb7stTaFgpCVfDdkstOjpRscia7YL-9c7RqTySQhMxvnjwzQ8hrztacSfMhpbVkUj4hx1y1uuGd0E_xzvqu0ULpI_Ki1lvGWKdM_5wcCSF0xzU_JvZjqGXZzTDSyzxBodVZ73McK51gDHYGajcpl8lGOl3E5UZRvyQ3h5xoSNTSKS8VcB8h0uypL3YbItDvtN6lsaDkS_LM21jh1cO5It8-nX89u2yuP19cnZ1eN04xMzd202nNpURnvTFStK71rHfA3DiCMr4VGDa8Vdwhpq1W-MSt7DZcgWNMrsjJve6u5B8L1HmYQnUQo02AHgfOhGECP1GIvv0Hvc1LSegOKdm3HeseU1sbYQjJ57lYtxcdToURUqgOnazI-j8UrhGm4HICj-04THh_kIDMDD_nrV1qHa6-3Byy7-5ZV3KtBfywK2Gy5Q597q2aIaVhP3gk3zyUtGxwcH-435P-256KobSF8rjmQ61fPiew8w</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Ronesi, Jennifer A</creator><creator>Collins, Katie A</creator><creator>Hays, Seth A</creator><creator>Tsai, Nien-Pei</creator><creator>Guo, Weirui</creator><creator>Birnbaum, Shari G</creator><creator>Hu, Jia-Hua</creator><creator>Worley, Paul F</creator><creator>Gibson, Jay R</creator><creator>Huber, Kimberly M</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20120301</creationdate><title>Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome</title><author>Ronesi, Jennifer A ; Collins, Katie A ; Hays, Seth A ; Tsai, Nien-Pei ; Guo, Weirui ; Birnbaum, Shari G ; Hu, Jia-Hua ; Worley, Paul F ; Gibson, Jay R ; Huber, Kimberly M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-ab766133226988324c4f09ce0cdde58f4266181451c6136a65f421a37b15ec003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/378/1689</topic><topic>631/378/340</topic><topic>Analysis of Variance</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cycloheximide - pharmacology</topic><topic>Disease Models, Animal</topic><topic>Electric Stimulation - methods</topic><topic>Exploratory Behavior - physiology</topic><topic>Fragile X Mental Retardation Protein</topic><topic>Fragile X syndrome</topic><topic>Fragile X Syndrome - genetics</topic><topic>Fragile X Syndrome - metabolism</topic><topic>Fragile X Syndrome - pathology</topic><topic>Fragile X Syndrome - physiopathology</topic><topic>Gene Expression Regulation - genetics</topic><topic>Gene Expression Regulation - physiology</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Hippocampus - pathology</topic><topic>Hippocampus - physiopathology</topic><topic>Homer Scaffolding Proteins</topic><topic>Immunoprecipitation</topic><topic>In Vitro Techniques</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Long-Term Potentiation - genetics</topic><topic>Methoxyhydroxyphenylglycol - analogs & derivatives</topic><topic>Methoxyhydroxyphenylglycol - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Mutation</topic><topic>Nerve Net - drug effects</topic><topic>Nerve Net - physiology</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Neurotransmitter receptors</topic><topic>Patch-Clamp Techniques</topic><topic>Peptides - pharmacology</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Protein Synthesis Inhibitors - pharmacology</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Receptor, Metabotropic Glutamate 5</topic><topic>Receptors, Metabotropic Glutamate - chemistry</topic><topic>Receptors, Metabotropic Glutamate - metabolism</topic><topic>Risk factors</topic><topic>Serine - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ronesi, Jennifer A</creatorcontrib><creatorcontrib>Collins, Katie A</creatorcontrib><creatorcontrib>Hays, Seth A</creatorcontrib><creatorcontrib>Tsai, Nien-Pei</creatorcontrib><creatorcontrib>Guo, Weirui</creatorcontrib><creatorcontrib>Birnbaum, Shari G</creatorcontrib><creatorcontrib>Hu, Jia-Hua</creatorcontrib><creatorcontrib>Worley, Paul F</creatorcontrib><creatorcontrib>Gibson, Jay R</creatorcontrib><creatorcontrib>Huber, Kimberly M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ronesi, Jennifer A</au><au>Collins, Katie A</au><au>Hays, Seth A</au><au>Tsai, Nien-Pei</au><au>Guo, Weirui</au><au>Birnbaum, Shari G</au><au>Hu, Jia-Hua</au><au>Worley, Paul F</au><au>Gibson, Jay R</au><au>Huber, Kimberly M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>15</volume><issue>3</issue><spage>431</spage><epage>440</epage><pages>431-440</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>This study shows that the interaction between metabotropic glutamate receptor 5 (mGluR5) and a specific form of the scaffolding protein Homer contributes to the behavioral and physiological defects in the mouse model of fragile X syndrome.
Enhanced metabotropic glutamate receptor subunit 5 (mGluR5) function is causally associated with the pathophysiology of fragile X syndrome, a leading inherited cause of intellectual disability and autism. Here we provide evidence that altered mGluR5-Homer scaffolds contribute to mGluR5 dysfunction and phenotypes in the fragile X syndrome mouse model,
Fmr1
knockout (
Fmr1
−/
y
). In
Fmr1
−/
y
mice, mGluR5 was less associated with long Homer isoforms but more associated with the short Homer1a. Genetic deletion of Homer1a restored mGluR5–long Homer scaffolds and corrected several phenotypes in
Fmr1
−/
y
mice, including altered mGluR5 signaling, neocortical circuit dysfunction and behavior. Acute, peptide-mediated disruption of mGluR5-Homer scaffolds in wild-type mice mimicked many
Fmr1
−/
y
phenotypes. In contrast, Homer1a deletion did not rescue altered mGluR-dependent long-term synaptic depression or translational control of target mRNAs of fragile X mental retardation protein, the gene product of
Fmr1
. Our findings reveal new functions for mGluR5-Homer interactions in the brain and delineate distinct mechanisms of mGluR5 dysfunction in a mouse model of cognitive dysfunction and autism.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>22267161</pmid><doi>10.1038/nn.3033</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2012-03, Vol.15 (3), p.431-440 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_proquest_miscellaneous_1028027665 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/378/1689 631/378/340 Analysis of Variance Animal Genetics and Genomics Animals Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Carrier Proteins - genetics Carrier Proteins - metabolism Cycloheximide - pharmacology Disease Models, Animal Electric Stimulation - methods Exploratory Behavior - physiology Fragile X Mental Retardation Protein Fragile X syndrome Fragile X Syndrome - genetics Fragile X Syndrome - metabolism Fragile X Syndrome - pathology Fragile X Syndrome - physiopathology Gene Expression Regulation - genetics Gene Expression Regulation - physiology Gene mutations Genetic aspects Health aspects Hippocampus - pathology Hippocampus - physiopathology Homer Scaffolding Proteins Immunoprecipitation In Vitro Techniques Long-Term Potentiation - drug effects Long-Term Potentiation - genetics Methoxyhydroxyphenylglycol - analogs & derivatives Methoxyhydroxyphenylglycol - pharmacology Mice Mice, Inbred C57BL Mice, Transgenic Mutation Nerve Net - drug effects Nerve Net - physiology Neurobiology Neurosciences Neurotransmitter receptors Patch-Clamp Techniques Peptides - pharmacology Physics Physiological aspects Protein Synthesis Inhibitors - pharmacology Rats Rats, Long-Evans Receptor, Metabotropic Glutamate 5 Receptors, Metabotropic Glutamate - chemistry Receptors, Metabotropic Glutamate - metabolism Risk factors Serine - metabolism Signal Transduction - drug effects Signal Transduction - genetics TOR Serine-Threonine Kinases - metabolism |
title | Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disrupted%20Homer%20scaffolds%20mediate%20abnormal%20mGluR5%20function%20in%20a%20mouse%20model%20of%20fragile%20X%20syndrome&rft.jtitle=Nature%20neuroscience&rft.au=Ronesi,%20Jennifer%20A&rft.date=2012-03-01&rft.volume=15&rft.issue=3&rft.spage=431&rft.epage=440&rft.pages=431-440&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3033&rft_dat=%3Cgale_proqu%3EA282325761%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1039470765&rft_id=info:pmid/22267161&rft_galeid=A282325761&rfr_iscdi=true |