From steady‐state to synchronized yeast glycolytic oscillations I: model construction

An existing detailed kinetic model for the steady‐state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. Using a small subset of experimental data, the original model was adapted by adjusting its parameter values in three optimization steps. Only small adaptation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2012-08, Vol.279 (16), p.2810-2822
Hauptverfasser: du Preez, Franco B., van Niekerk, David D., Kooi, Bob, Rohwer, Johann M., Snoep, Jacky L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2822
container_issue 16
container_start_page 2810
container_title The FEBS journal
container_volume 279
creator du Preez, Franco B.
van Niekerk, David D.
Kooi, Bob
Rohwer, Johann M.
Snoep, Jacky L.
description An existing detailed kinetic model for the steady‐state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. Using a small subset of experimental data, the original model was adapted by adjusting its parameter values in three optimization steps. Only small adaptations to the original model were required for realistic simulation of experimental data for limit‐cycle oscillations. The greatest changes were required for parameter values for the phosphofructokinase reaction. The importance of ATP for the oscillatory mechanism and NAD(H) for inter‐and intra‐cellular communications and synchronization was evident in the optimization steps and simulation experiments. In an accompanying paper [du Preez F et al. (2012) FEBS J279, 2823–2836], we validate the model for a wide variety of experiments on oscillatory yeast cells. The results are important for re‐use of detailed kinetic models in modular modeling approaches and for approaches such as that used in the Silicon Cell initiative. Database 
The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/dupreez/index.html. Using a small subset of experimental data, an existing detailed kinetic model for steady state behavior of yeast glycolysis was adapted to simulate dynamic behavior. Only small adaptations needed to be made to the original model for a realistic simulation of experimental data for limit cycle oscillations. Largest changes were needed to parameter values for the phosphofructokinase reaction
doi_str_mv 10.1111/j.1742-4658.2012.08665.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1028020706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1028020706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3985-1721d6c7e53b618c22417cca8069ab543efcf72512791412f96dae6a52d5dd8d3</originalsourceid><addsrcrecordid>eNqNkM1O3DAQgK0KVGDhFSpLvXDZYDv-Sw9IgFhAWqmHFsHN8tpOm1USg-0I0lMfoc_YJ8Fh6R441ZcZj78Zjz4AIEYFzudkXWBByZxyJguCMCmQ5JwVzx_A_vZhZ5vT-z1wEOMaoZLRqvoI9ggRmLCS7oO7RfAdjMlpO_79_ScmnRxMHsaxNz-D75tfzsLR6Zjgj3Y0vh1TY6CPpmlbnRrfR3jzBXbeuhaafEthMFP5EOzWuo3u6C3OwO3i8vvF9Xz59erm4mw5N2Ul2RwLgi03wrFyxbE0hFAsjNES8UqvGC1dbWpBGCaiwhSTuuJWO64ZscxaacsZON7MfQj-cXAxqa6JxuXleueHqDAiEhEkEM_o53fo2g-hz9tNlGCcSsQyJTeUCT7G4Gr1EJpOhzFDapKv1mryqibHapKvXuWr59z66e2DYdU5u238ZzsDpxvgqWnd-N-D1eLy_NuUli_BeZRB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027564805</pqid></control><display><type>article</type><title>From steady‐state to synchronized yeast glycolytic oscillations I: model construction</title><source>Wiley-Blackwell Journals</source><source>IngentaConnect Backfiles</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Wiley Online Library (Open Access Collection)</source><creator>du Preez, Franco B. ; van Niekerk, David D. ; Kooi, Bob ; Rohwer, Johann M. ; Snoep, Jacky L.</creator><creatorcontrib>du Preez, Franco B. ; van Niekerk, David D. ; Kooi, Bob ; Rohwer, Johann M. ; Snoep, Jacky L.</creatorcontrib><description>An existing detailed kinetic model for the steady‐state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. Using a small subset of experimental data, the original model was adapted by adjusting its parameter values in three optimization steps. Only small adaptations to the original model were required for realistic simulation of experimental data for limit‐cycle oscillations. The greatest changes were required for parameter values for the phosphofructokinase reaction. The importance of ATP for the oscillatory mechanism and NAD(H) for inter‐and intra‐cellular communications and synchronization was evident in the optimization steps and simulation experiments. In an accompanying paper [du Preez F et al. (2012) FEBS J279, 2823–2836], we validate the model for a wide variety of experiments on oscillatory yeast cells. The results are important for re‐use of detailed kinetic models in modular modeling approaches and for approaches such as that used in the Silicon Cell initiative. Database 
The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/dupreez/index.html. Using a small subset of experimental data, an existing detailed kinetic model for steady state behavior of yeast glycolysis was adapted to simulate dynamic behavior. Only small adaptations needed to be made to the original model for a realistic simulation of experimental data for limit cycle oscillations. Largest changes were needed to parameter values for the phosphofructokinase reaction</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/j.1742-4658.2012.08665.x</identifier><identifier>PMID: 22712534</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Acetaldehyde - metabolism ; Adenosine Triphosphatases - metabolism ; Cell Communication - physiology ; Computer Simulation ; Databases, Factual ; Enzyme kinetics ; Glycolysis ; Kinetics ; limit‐cycle oscillation ; mathematical model ; Mathematical models ; Metabolic Networks and Pathways ; Microbiology ; model construction ; Models, Biological ; NAD - metabolism ; Phosphofructokinases - metabolism ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae ; Systems Biology ; Yeast</subject><ispartof>The FEBS journal, 2012-08, Vol.279 (16), p.2810-2822</ispartof><rights>2012 The Authors Journal compilation © 2012 FEBS</rights><rights>2012 The Authors Journal compilation © 2012 FEBS.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3985-1721d6c7e53b618c22417cca8069ab543efcf72512791412f96dae6a52d5dd8d3</citedby><cites>FETCH-LOGICAL-c3985-1721d6c7e53b618c22417cca8069ab543efcf72512791412f96dae6a52d5dd8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1742-4658.2012.08665.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1742-4658.2012.08665.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,27929,27930,45579,45580,46414,46838</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22712534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>du Preez, Franco B.</creatorcontrib><creatorcontrib>van Niekerk, David D.</creatorcontrib><creatorcontrib>Kooi, Bob</creatorcontrib><creatorcontrib>Rohwer, Johann M.</creatorcontrib><creatorcontrib>Snoep, Jacky L.</creatorcontrib><title>From steady‐state to synchronized yeast glycolytic oscillations I: model construction</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>An existing detailed kinetic model for the steady‐state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. Using a small subset of experimental data, the original model was adapted by adjusting its parameter values in three optimization steps. Only small adaptations to the original model were required for realistic simulation of experimental data for limit‐cycle oscillations. The greatest changes were required for parameter values for the phosphofructokinase reaction. The importance of ATP for the oscillatory mechanism and NAD(H) for inter‐and intra‐cellular communications and synchronization was evident in the optimization steps and simulation experiments. In an accompanying paper [du Preez F et al. (2012) FEBS J279, 2823–2836], we validate the model for a wide variety of experiments on oscillatory yeast cells. The results are important for re‐use of detailed kinetic models in modular modeling approaches and for approaches such as that used in the Silicon Cell initiative. Database 
The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/dupreez/index.html. Using a small subset of experimental data, an existing detailed kinetic model for steady state behavior of yeast glycolysis was adapted to simulate dynamic behavior. Only small adaptations needed to be made to the original model for a realistic simulation of experimental data for limit cycle oscillations. Largest changes were needed to parameter values for the phosphofructokinase reaction</description><subject>Acetaldehyde - metabolism</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Cell Communication - physiology</subject><subject>Computer Simulation</subject><subject>Databases, Factual</subject><subject>Enzyme kinetics</subject><subject>Glycolysis</subject><subject>Kinetics</subject><subject>limit‐cycle oscillation</subject><subject>mathematical model</subject><subject>Mathematical models</subject><subject>Metabolic Networks and Pathways</subject><subject>Microbiology</subject><subject>model construction</subject><subject>Models, Biological</subject><subject>NAD - metabolism</subject><subject>Phosphofructokinases - metabolism</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Systems Biology</subject><subject>Yeast</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1O3DAQgK0KVGDhFSpLvXDZYDv-Sw9IgFhAWqmHFsHN8tpOm1USg-0I0lMfoc_YJ8Fh6R441ZcZj78Zjz4AIEYFzudkXWBByZxyJguCMCmQ5JwVzx_A_vZhZ5vT-z1wEOMaoZLRqvoI9ggRmLCS7oO7RfAdjMlpO_79_ScmnRxMHsaxNz-D75tfzsLR6Zjgj3Y0vh1TY6CPpmlbnRrfR3jzBXbeuhaafEthMFP5EOzWuo3u6C3OwO3i8vvF9Xz59erm4mw5N2Ul2RwLgi03wrFyxbE0hFAsjNES8UqvGC1dbWpBGCaiwhSTuuJWO64ZscxaacsZON7MfQj-cXAxqa6JxuXleueHqDAiEhEkEM_o53fo2g-hz9tNlGCcSsQyJTeUCT7G4Gr1EJpOhzFDapKv1mryqibHapKvXuWr59z66e2DYdU5u238ZzsDpxvgqWnd-N-D1eLy_NuUli_BeZRB</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>du Preez, Franco B.</creator><creator>van Niekerk, David D.</creator><creator>Kooi, Bob</creator><creator>Rohwer, Johann M.</creator><creator>Snoep, Jacky L.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201208</creationdate><title>From steady‐state to synchronized yeast glycolytic oscillations I: model construction</title><author>du Preez, Franco B. ; van Niekerk, David D. ; Kooi, Bob ; Rohwer, Johann M. ; Snoep, Jacky L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3985-1721d6c7e53b618c22417cca8069ab543efcf72512791412f96dae6a52d5dd8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acetaldehyde - metabolism</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Cell Communication - physiology</topic><topic>Computer Simulation</topic><topic>Databases, Factual</topic><topic>Enzyme kinetics</topic><topic>Glycolysis</topic><topic>Kinetics</topic><topic>limit‐cycle oscillation</topic><topic>mathematical model</topic><topic>Mathematical models</topic><topic>Metabolic Networks and Pathways</topic><topic>Microbiology</topic><topic>model construction</topic><topic>Models, Biological</topic><topic>NAD - metabolism</topic><topic>Phosphofructokinases - metabolism</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Systems Biology</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>du Preez, Franco B.</creatorcontrib><creatorcontrib>van Niekerk, David D.</creatorcontrib><creatorcontrib>Kooi, Bob</creatorcontrib><creatorcontrib>Rohwer, Johann M.</creatorcontrib><creatorcontrib>Snoep, Jacky L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>du Preez, Franco B.</au><au>van Niekerk, David D.</au><au>Kooi, Bob</au><au>Rohwer, Johann M.</au><au>Snoep, Jacky L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From steady‐state to synchronized yeast glycolytic oscillations I: model construction</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2012-08</date><risdate>2012</risdate><volume>279</volume><issue>16</issue><spage>2810</spage><epage>2822</epage><pages>2810-2822</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>An existing detailed kinetic model for the steady‐state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. Using a small subset of experimental data, the original model was adapted by adjusting its parameter values in three optimization steps. Only small adaptations to the original model were required for realistic simulation of experimental data for limit‐cycle oscillations. The greatest changes were required for parameter values for the phosphofructokinase reaction. The importance of ATP for the oscillatory mechanism and NAD(H) for inter‐and intra‐cellular communications and synchronization was evident in the optimization steps and simulation experiments. In an accompanying paper [du Preez F et al. (2012) FEBS J279, 2823–2836], we validate the model for a wide variety of experiments on oscillatory yeast cells. The results are important for re‐use of detailed kinetic models in modular modeling approaches and for approaches such as that used in the Silicon Cell initiative. Database 
The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/dupreez/index.html. Using a small subset of experimental data, an existing detailed kinetic model for steady state behavior of yeast glycolysis was adapted to simulate dynamic behavior. Only small adaptations needed to be made to the original model for a realistic simulation of experimental data for limit cycle oscillations. Largest changes were needed to parameter values for the phosphofructokinase reaction</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22712534</pmid><doi>10.1111/j.1742-4658.2012.08665.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2012-08, Vol.279 (16), p.2810-2822
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_1028020706
source Wiley-Blackwell Journals; IngentaConnect Backfiles; MEDLINE; Full-Text Journals in Chemistry (Open access); Wiley Online Library (Open Access Collection)
subjects Acetaldehyde - metabolism
Adenosine Triphosphatases - metabolism
Cell Communication - physiology
Computer Simulation
Databases, Factual
Enzyme kinetics
Glycolysis
Kinetics
limit‐cycle oscillation
mathematical model
Mathematical models
Metabolic Networks and Pathways
Microbiology
model construction
Models, Biological
NAD - metabolism
Phosphofructokinases - metabolism
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae
Systems Biology
Yeast
title From steady‐state to synchronized yeast glycolytic oscillations I: model construction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T19%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20steady%E2%80%90state%20to%20synchronized%20yeast%20glycolytic%20oscillations%20I:%20model%20construction&rft.jtitle=The%20FEBS%20journal&rft.au=du%20Preez,%20Franco%20B.&rft.date=2012-08&rft.volume=279&rft.issue=16&rft.spage=2810&rft.epage=2822&rft.pages=2810-2822&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/j.1742-4658.2012.08665.x&rft_dat=%3Cproquest_cross%3E1028020706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027564805&rft_id=info:pmid/22712534&rfr_iscdi=true