Oil sludge depository assessment using multivariate data analysis

Oil-containing industrial wastes tend to accumulate and present a growing environmental danger. This is of particular concern in certain areas of Russia. For effective processing of depositories, the wastes' physico-chemical properties and depository characteristics should both be taken into ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2012-08, Vol.105, p.144-151
Hauptverfasser: Ermakov, V.V., Bogomolov, A., Bykov, D.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue
container_start_page 144
container_title Journal of environmental management
container_volume 105
creator Ermakov, V.V.
Bogomolov, A.
Bykov, D.E.
description Oil-containing industrial wastes tend to accumulate and present a growing environmental danger. This is of particular concern in certain areas of Russia. For effective processing of depositories, the wastes' physico-chemical properties and depository characteristics should both be taken into account. Representative sample sets were collected from fifty four depositories of different age, origin, and location in Samara region and analyzed using multivariate data analysis: Principal Component Analysis (PCA) and Partial Least-Squares (PLS) regression. PCA results provide a better understanding of the internal data structure, i.e. variable correlations and groupings. Based on the PCA results, a new approach to the classification of oil sludge depositories has been suggested. Another practically important task of site assessment has been solved by PLS regression modeling. The method has been successfully applied to the accurate estimation of the depository processing profitability for a specific site. ► We examined 54 oil sludge storage sites of various type, origin, age and composition. ► We suggest using both sludge and depository attributes for the site assessment. ► The PCA model reveals data structure that aids in the waste treatment selection. ► PLS regression on the suggested descriptors is well-suited for storage evaluation.
doi_str_mv 10.1016/j.jenvman.2012.03.041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1027674231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301479712001600</els_id><sourcerecordid>1027674231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-1e8e7501c149406985f0f783e506ca88bfdafba15fded4cf52ba0573298cdc303</originalsourceid><addsrcrecordid>eNqN0U1v1DAQBmALgei28BOASFx6SRh_xc4JVRVfUqUeoGfL60xWjvKxeJKV9t9jugsHLvQ0l2dejeZl7A2HigOvP_RVj9Nh9FMlgIsKZAWKP2MbDo0ubS3hOduABF4q05gLdknUA4AU3LxkF0LoWimpNuzmPg4FDWu7w6LF_UxxmdOx8ERINOK0FCvFaVeM67DEg0_RLxn6xRd-8sORIr1iLzo_EL4-zyv28PnTj9uv5d39l2-3N3dlUFYuJUeLRgMPXDUK6sbqDjpjJWqog7d227W-23quuxZbFTotth60kaKxoQ0S5BW7PuXu0_xzRVrcGCngMPgJ55UcB2Fqo4TkT6FgtW7sU1K5FkrbWmT6_h_az2vKX3hUtRGQv5qVPqmQZqKEndunOPp0zOjRud6dm3O_m3MgXW4u7709p6_bEdu_W3-qyuDdCXR-dn6XIrmH7zlBAXCja2uz-HgSmGs4REyOQsQpYBsThsW1c_zPEb8Asny0NA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1016720256</pqid></control><display><type>article</type><title>Oil sludge depository assessment using multivariate data analysis</title><source>MEDLINE</source><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Ermakov, V.V. ; Bogomolov, A. ; Bykov, D.E.</creator><creatorcontrib>Ermakov, V.V. ; Bogomolov, A. ; Bykov, D.E.</creatorcontrib><description>Oil-containing industrial wastes tend to accumulate and present a growing environmental danger. This is of particular concern in certain areas of Russia. For effective processing of depositories, the wastes' physico-chemical properties and depository characteristics should both be taken into account. Representative sample sets were collected from fifty four depositories of different age, origin, and location in Samara region and analyzed using multivariate data analysis: Principal Component Analysis (PCA) and Partial Least-Squares (PLS) regression. PCA results provide a better understanding of the internal data structure, i.e. variable correlations and groupings. Based on the PCA results, a new approach to the classification of oil sludge depositories has been suggested. Another practically important task of site assessment has been solved by PLS regression modeling. The method has been successfully applied to the accurate estimation of the depository processing profitability for a specific site. ► We examined 54 oil sludge storage sites of various type, origin, age and composition. ► We suggest using both sludge and depository attributes for the site assessment. ► The PCA model reveals data structure that aids in the waste treatment selection. ► PLS regression on the suggested descriptors is well-suited for storage evaluation.</description><identifier>ISSN: 0301-4797</identifier><identifier>EISSN: 1095-8630</identifier><identifier>DOI: 10.1016/j.jenvman.2012.03.041</identifier><identifier>PMID: 22564434</identifier><identifier>CODEN: JEVMAW</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Assessments ; Data processing ; Data structures ; Deposition ; Ecological engineering ; Ecology ; Environmental effects ; Environmental Monitoring ; fruits ; Industrial pollution ; Industrial Waste ; Industrial wastes ; least squares ; Models, Theoretical ; Multivariate analysis ; Oil products ; Oil sludge ; oils ; Partial Least-Squares regression ; Petroleum - analysis ; Physical properties ; physicochemical properties ; Position (location) ; Principal Component Analysis ; Principal components analysis ; Principle component analysis ; profitability ; Regression ; Regression analysis ; Russia ; Russian Federation ; Sewage ; Sludge ; Time Factors ; Waste management ; Waste processing</subject><ispartof>Journal of environmental management, 2012-08, Vol.105, p.144-151</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Academic Press Ltd. Aug 30, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-1e8e7501c149406985f0f783e506ca88bfdafba15fded4cf52ba0573298cdc303</citedby><cites>FETCH-LOGICAL-c483t-1e8e7501c149406985f0f783e506ca88bfdafba15fded4cf52ba0573298cdc303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jenvman.2012.03.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22564434$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ermakov, V.V.</creatorcontrib><creatorcontrib>Bogomolov, A.</creatorcontrib><creatorcontrib>Bykov, D.E.</creatorcontrib><title>Oil sludge depository assessment using multivariate data analysis</title><title>Journal of environmental management</title><addtitle>J Environ Manage</addtitle><description>Oil-containing industrial wastes tend to accumulate and present a growing environmental danger. This is of particular concern in certain areas of Russia. For effective processing of depositories, the wastes' physico-chemical properties and depository characteristics should both be taken into account. Representative sample sets were collected from fifty four depositories of different age, origin, and location in Samara region and analyzed using multivariate data analysis: Principal Component Analysis (PCA) and Partial Least-Squares (PLS) regression. PCA results provide a better understanding of the internal data structure, i.e. variable correlations and groupings. Based on the PCA results, a new approach to the classification of oil sludge depositories has been suggested. Another practically important task of site assessment has been solved by PLS regression modeling. The method has been successfully applied to the accurate estimation of the depository processing profitability for a specific site. ► We examined 54 oil sludge storage sites of various type, origin, age and composition. ► We suggest using both sludge and depository attributes for the site assessment. ► The PCA model reveals data structure that aids in the waste treatment selection. ► PLS regression on the suggested descriptors is well-suited for storage evaluation.</description><subject>Assessments</subject><subject>Data processing</subject><subject>Data structures</subject><subject>Deposition</subject><subject>Ecological engineering</subject><subject>Ecology</subject><subject>Environmental effects</subject><subject>Environmental Monitoring</subject><subject>fruits</subject><subject>Industrial pollution</subject><subject>Industrial Waste</subject><subject>Industrial wastes</subject><subject>least squares</subject><subject>Models, Theoretical</subject><subject>Multivariate analysis</subject><subject>Oil products</subject><subject>Oil sludge</subject><subject>oils</subject><subject>Partial Least-Squares regression</subject><subject>Petroleum - analysis</subject><subject>Physical properties</subject><subject>physicochemical properties</subject><subject>Position (location)</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Principle component analysis</subject><subject>profitability</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Russia</subject><subject>Russian Federation</subject><subject>Sewage</subject><subject>Sludge</subject><subject>Time Factors</subject><subject>Waste management</subject><subject>Waste processing</subject><issn>0301-4797</issn><issn>1095-8630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U1v1DAQBmALgei28BOASFx6SRh_xc4JVRVfUqUeoGfL60xWjvKxeJKV9t9jugsHLvQ0l2dejeZl7A2HigOvP_RVj9Nh9FMlgIsKZAWKP2MbDo0ubS3hOduABF4q05gLdknUA4AU3LxkF0LoWimpNuzmPg4FDWu7w6LF_UxxmdOx8ERINOK0FCvFaVeM67DEg0_RLxn6xRd-8sORIr1iLzo_EL4-zyv28PnTj9uv5d39l2-3N3dlUFYuJUeLRgMPXDUK6sbqDjpjJWqog7d227W-23quuxZbFTotth60kaKxoQ0S5BW7PuXu0_xzRVrcGCngMPgJ55UcB2Fqo4TkT6FgtW7sU1K5FkrbWmT6_h_az2vKX3hUtRGQv5qVPqmQZqKEndunOPp0zOjRud6dm3O_m3MgXW4u7709p6_bEdu_W3-qyuDdCXR-dn6XIrmH7zlBAXCja2uz-HgSmGs4REyOQsQpYBsThsW1c_zPEb8Asny0NA</recordid><startdate>20120830</startdate><enddate>20120830</enddate><creator>Ermakov, V.V.</creator><creator>Bogomolov, A.</creator><creator>Bykov, D.E.</creator><general>Elsevier Ltd</general><general>Academic Press Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SN</scope><scope>7ST</scope><scope>7UA</scope><scope>8BJ</scope><scope>C1K</scope><scope>F1W</scope><scope>FQK</scope><scope>H97</scope><scope>JBE</scope><scope>L.G</scope><scope>SOI</scope><scope>7X8</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120830</creationdate><title>Oil sludge depository assessment using multivariate data analysis</title><author>Ermakov, V.V. ; Bogomolov, A. ; Bykov, D.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-1e8e7501c149406985f0f783e506ca88bfdafba15fded4cf52ba0573298cdc303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Assessments</topic><topic>Data processing</topic><topic>Data structures</topic><topic>Deposition</topic><topic>Ecological engineering</topic><topic>Ecology</topic><topic>Environmental effects</topic><topic>Environmental Monitoring</topic><topic>fruits</topic><topic>Industrial pollution</topic><topic>Industrial Waste</topic><topic>Industrial wastes</topic><topic>least squares</topic><topic>Models, Theoretical</topic><topic>Multivariate analysis</topic><topic>Oil products</topic><topic>Oil sludge</topic><topic>oils</topic><topic>Partial Least-Squares regression</topic><topic>Petroleum - analysis</topic><topic>Physical properties</topic><topic>physicochemical properties</topic><topic>Position (location)</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Principle component analysis</topic><topic>profitability</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Russia</topic><topic>Russian Federation</topic><topic>Sewage</topic><topic>Sludge</topic><topic>Time Factors</topic><topic>Waste management</topic><topic>Waste processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ermakov, V.V.</creatorcontrib><creatorcontrib>Bogomolov, A.</creatorcontrib><creatorcontrib>Bykov, D.E.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>International Bibliography of the Social Sciences</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of environmental management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ermakov, V.V.</au><au>Bogomolov, A.</au><au>Bykov, D.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oil sludge depository assessment using multivariate data analysis</atitle><jtitle>Journal of environmental management</jtitle><addtitle>J Environ Manage</addtitle><date>2012-08-30</date><risdate>2012</risdate><volume>105</volume><spage>144</spage><epage>151</epage><pages>144-151</pages><issn>0301-4797</issn><eissn>1095-8630</eissn><coden>JEVMAW</coden><abstract>Oil-containing industrial wastes tend to accumulate and present a growing environmental danger. This is of particular concern in certain areas of Russia. For effective processing of depositories, the wastes' physico-chemical properties and depository characteristics should both be taken into account. Representative sample sets were collected from fifty four depositories of different age, origin, and location in Samara region and analyzed using multivariate data analysis: Principal Component Analysis (PCA) and Partial Least-Squares (PLS) regression. PCA results provide a better understanding of the internal data structure, i.e. variable correlations and groupings. Based on the PCA results, a new approach to the classification of oil sludge depositories has been suggested. Another practically important task of site assessment has been solved by PLS regression modeling. The method has been successfully applied to the accurate estimation of the depository processing profitability for a specific site. ► We examined 54 oil sludge storage sites of various type, origin, age and composition. ► We suggest using both sludge and depository attributes for the site assessment. ► The PCA model reveals data structure that aids in the waste treatment selection. ► PLS regression on the suggested descriptors is well-suited for storage evaluation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22564434</pmid><doi>10.1016/j.jenvman.2012.03.041</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-4797
ispartof Journal of environmental management, 2012-08, Vol.105, p.144-151
issn 0301-4797
1095-8630
language eng
recordid cdi_proquest_miscellaneous_1027674231
source MEDLINE; ScienceDirect Freedom Collection (Elsevier)
subjects Assessments
Data processing
Data structures
Deposition
Ecological engineering
Ecology
Environmental effects
Environmental Monitoring
fruits
Industrial pollution
Industrial Waste
Industrial wastes
least squares
Models, Theoretical
Multivariate analysis
Oil products
Oil sludge
oils
Partial Least-Squares regression
Petroleum - analysis
Physical properties
physicochemical properties
Position (location)
Principal Component Analysis
Principal components analysis
Principle component analysis
profitability
Regression
Regression analysis
Russia
Russian Federation
Sewage
Sludge
Time Factors
Waste management
Waste processing
title Oil sludge depository assessment using multivariate data analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oil%20sludge%20depository%20assessment%20using%20multivariate%20data%20analysis&rft.jtitle=Journal%20of%20environmental%20management&rft.au=Ermakov,%20V.V.&rft.date=2012-08-30&rft.volume=105&rft.spage=144&rft.epage=151&rft.pages=144-151&rft.issn=0301-4797&rft.eissn=1095-8630&rft.coden=JEVMAW&rft_id=info:doi/10.1016/j.jenvman.2012.03.041&rft_dat=%3Cproquest_cross%3E1027674231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1016720256&rft_id=info:pmid/22564434&rft_els_id=S0301479712001600&rfr_iscdi=true