Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells

Previously, we proposed a new paradigm to explain the compartment-specific role of autophagy in tumor metabolism. In this model, autophagy and mitochondrial dysfunction in the tumor stroma promotes cellular catabolism, which results in the production of recycled nutrients. These chemical building bl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell cycle (Georgetown, Tex.) Tex.), 2012-07, Vol.11 (13), p.2545-2559
Hauptverfasser: Salem, Ahmed F., Whitaker-Menezes, Diana, Lin, Zhao, Martinez-Outschoorn, Ubaldo E., Tanowitz, Herbert B., Al-Zoubi, Mazhar Salim, Howell, Anthony, Pestell, Richard G., Sotgia, Federica, Lisanti, Michael P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2559
container_issue 13
container_start_page 2545
container_title Cell cycle (Georgetown, Tex.)
container_volume 11
creator Salem, Ahmed F.
Whitaker-Menezes, Diana
Lin, Zhao
Martinez-Outschoorn, Ubaldo E.
Tanowitz, Herbert B.
Al-Zoubi, Mazhar Salim
Howell, Anthony
Pestell, Richard G.
Sotgia, Federica
Lisanti, Michael P.
description Previously, we proposed a new paradigm to explain the compartment-specific role of autophagy in tumor metabolism. In this model, autophagy and mitochondrial dysfunction in the tumor stroma promotes cellular catabolism, which results in the production of recycled nutrients. These chemical building blocks and high-energy "fuels" would then drive the anabolic growth of tumors, via autophagy resistance and oxidative mitochondrial metabolism in cancer cells. We have termed this new form of stromal-epithelial metabolic coupling: "two-compartment tumor metabolism." Here, we stringently tested this energy-transfer hypothesis, by genetically creating (1) constitutively autophagic fibroblasts, with mitochondrial dysfunction or (2) autophagy-resistant cancer cells, with increased mitochondrial function. Autophagic fibroblasts were generated by stably overexpressing key target genes that lead to AMP-kinase activation, such as DRAM and LKB1. Autophagy-resistant cancer cells were derived by overexpressing GOLPH3, which functionally promotes mitochondrial biogenesis. As predicted, DRAM and LKB1 overexpressing fibroblasts were constitutively autophagic and effectively promoted tumor growth. We validated that autophagic fibroblasts showed mitochondrial dysfunction, with increased production of mitochondrial fuels (L-lactate and ketone body accumulation). Conversely, GOLPH3 overexpressing breast cancer cells were autophagy-resistant, and showed signs of increased mitochondrial biogenesis and function, which resulted in increased tumor growth. Thus, autophagy in the tumor stroma and oxidative mitochondrial metabolism (OXPHOS) in cancer cells can both dramatically promote tumor growth, independently of tumor angiogenesis. For the first time, our current studies also link the DNA damage response in the tumor microenvironment with "Warburg-like" cancer metabolism, as DRAM is a DNA damage/repair target gene.
doi_str_mv 10.4161/cc.20920
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1027040163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1027040163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-30bf1f3fbdf6c2ffa9383819c20b2858ae16e0c65e584259e8f649fba8e03e4c3</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxQdRbG0LfgKZx_Zh1vybbMYHoSxqhcIKttC3kMncdCMzyZhktu5H8Fub7bbbig8-JZDfOffknqJ4i9GMYY7faz0jqCHoRXGI6xpXDKH65fZORcUwwgfFmxh_IETEvMGviwNC5oQQzg-L31d3vtJ-GFVIA7hUpmnwoRwgqdb3Ng4fyvMp-XGlbjeldWVawSNidfDg1jZ4d69Uriv9L9upZNeQn5PXK--6YFX_zK88Xd58u1h-P9u6aeU0hFJD38fj4pVRfYSTh_OouP786WpxUV0uv3xdnF9WuuYkVRS1Bhtq2s5wTYxRDRVU4EYT1BJRCwWYA9K8hlowUjcgDGeNaZUARIFpelR83PmOUztAp3P0oHo5BjuosJFeWfn3i7MreevXkjLEhMDZ4PTBIPifE8QkBxu3X1AO_BQlRmSOGMKcPqF5VTEGMPsxGMltc1Jred9cRt89j7UHH6vKwGwH5DkdxNb6qC3k_T2hCJPFgmHB5diZLED_EeThuXare9iHoDuJdcaHQd350HcyqU3vgwm5LBsl_Sf6H153yys</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027040163</pqid></control><display><type>article</type><title>Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Salem, Ahmed F. ; Whitaker-Menezes, Diana ; Lin, Zhao ; Martinez-Outschoorn, Ubaldo E. ; Tanowitz, Herbert B. ; Al-Zoubi, Mazhar Salim ; Howell, Anthony ; Pestell, Richard G. ; Sotgia, Federica ; Lisanti, Michael P.</creator><creatorcontrib>Salem, Ahmed F. ; Whitaker-Menezes, Diana ; Lin, Zhao ; Martinez-Outschoorn, Ubaldo E. ; Tanowitz, Herbert B. ; Al-Zoubi, Mazhar Salim ; Howell, Anthony ; Pestell, Richard G. ; Sotgia, Federica ; Lisanti, Michael P.</creatorcontrib><description>Previously, we proposed a new paradigm to explain the compartment-specific role of autophagy in tumor metabolism. In this model, autophagy and mitochondrial dysfunction in the tumor stroma promotes cellular catabolism, which results in the production of recycled nutrients. These chemical building blocks and high-energy "fuels" would then drive the anabolic growth of tumors, via autophagy resistance and oxidative mitochondrial metabolism in cancer cells. We have termed this new form of stromal-epithelial metabolic coupling: "two-compartment tumor metabolism." Here, we stringently tested this energy-transfer hypothesis, by genetically creating (1) constitutively autophagic fibroblasts, with mitochondrial dysfunction or (2) autophagy-resistant cancer cells, with increased mitochondrial function. Autophagic fibroblasts were generated by stably overexpressing key target genes that lead to AMP-kinase activation, such as DRAM and LKB1. Autophagy-resistant cancer cells were derived by overexpressing GOLPH3, which functionally promotes mitochondrial biogenesis. As predicted, DRAM and LKB1 overexpressing fibroblasts were constitutively autophagic and effectively promoted tumor growth. We validated that autophagic fibroblasts showed mitochondrial dysfunction, with increased production of mitochondrial fuels (L-lactate and ketone body accumulation). Conversely, GOLPH3 overexpressing breast cancer cells were autophagy-resistant, and showed signs of increased mitochondrial biogenesis and function, which resulted in increased tumor growth. Thus, autophagy in the tumor stroma and oxidative mitochondrial metabolism (OXPHOS) in cancer cells can both dramatically promote tumor growth, independently of tumor angiogenesis. For the first time, our current studies also link the DNA damage response in the tumor microenvironment with "Warburg-like" cancer metabolism, as DRAM is a DNA damage/repair target gene.</description><identifier>ISSN: 1538-4101</identifier><identifier>EISSN: 1551-4005</identifier><identifier>DOI: 10.4161/cc.20920</identifier><identifier>PMID: 22722266</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>AMP kinase (AMPK) ; Autophagy ; Binding ; Biology ; Bioscience ; Calcium ; Cancer ; cancer metabolism ; cancer-associated fibroblasts ; Caveolin 1 - metabolism ; Cell ; Cell Line ; Cycle ; DNA damage response ; DNA Repair ; DRAM ; Fibroblasts - metabolism ; glycolysis ; GOLPH3 ; Humans ; Landes ; LKB1 ; Membrane Proteins - metabolism ; Mitochondria - metabolism ; Neoplasms - metabolism ; Neoplasms - pathology ; Organogenesis ; oxidative mitochondrial metabolism (OXPHOS) ; Oxidative Stress ; Protein-Serine-Threonine Kinases - metabolism ; Proteins ; Proteins - metabolism ; Tumor Microenvironment ; tumor stroma</subject><ispartof>Cell cycle (Georgetown, Tex.), 2012-07, Vol.11 (13), p.2545-2559</ispartof><rights>Copyright © 2012 Landes Bioscience 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-30bf1f3fbdf6c2ffa9383819c20b2858ae16e0c65e584259e8f649fba8e03e4c3</citedby><cites>FETCH-LOGICAL-c562t-30bf1f3fbdf6c2ffa9383819c20b2858ae16e0c65e584259e8f649fba8e03e4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404881/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404881/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22722266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salem, Ahmed F.</creatorcontrib><creatorcontrib>Whitaker-Menezes, Diana</creatorcontrib><creatorcontrib>Lin, Zhao</creatorcontrib><creatorcontrib>Martinez-Outschoorn, Ubaldo E.</creatorcontrib><creatorcontrib>Tanowitz, Herbert B.</creatorcontrib><creatorcontrib>Al-Zoubi, Mazhar Salim</creatorcontrib><creatorcontrib>Howell, Anthony</creatorcontrib><creatorcontrib>Pestell, Richard G.</creatorcontrib><creatorcontrib>Sotgia, Federica</creatorcontrib><creatorcontrib>Lisanti, Michael P.</creatorcontrib><title>Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells</title><title>Cell cycle (Georgetown, Tex.)</title><addtitle>Cell Cycle</addtitle><description>Previously, we proposed a new paradigm to explain the compartment-specific role of autophagy in tumor metabolism. In this model, autophagy and mitochondrial dysfunction in the tumor stroma promotes cellular catabolism, which results in the production of recycled nutrients. These chemical building blocks and high-energy "fuels" would then drive the anabolic growth of tumors, via autophagy resistance and oxidative mitochondrial metabolism in cancer cells. We have termed this new form of stromal-epithelial metabolic coupling: "two-compartment tumor metabolism." Here, we stringently tested this energy-transfer hypothesis, by genetically creating (1) constitutively autophagic fibroblasts, with mitochondrial dysfunction or (2) autophagy-resistant cancer cells, with increased mitochondrial function. Autophagic fibroblasts were generated by stably overexpressing key target genes that lead to AMP-kinase activation, such as DRAM and LKB1. Autophagy-resistant cancer cells were derived by overexpressing GOLPH3, which functionally promotes mitochondrial biogenesis. As predicted, DRAM and LKB1 overexpressing fibroblasts were constitutively autophagic and effectively promoted tumor growth. We validated that autophagic fibroblasts showed mitochondrial dysfunction, with increased production of mitochondrial fuels (L-lactate and ketone body accumulation). Conversely, GOLPH3 overexpressing breast cancer cells were autophagy-resistant, and showed signs of increased mitochondrial biogenesis and function, which resulted in increased tumor growth. Thus, autophagy in the tumor stroma and oxidative mitochondrial metabolism (OXPHOS) in cancer cells can both dramatically promote tumor growth, independently of tumor angiogenesis. For the first time, our current studies also link the DNA damage response in the tumor microenvironment with "Warburg-like" cancer metabolism, as DRAM is a DNA damage/repair target gene.</description><subject>AMP kinase (AMPK)</subject><subject>Autophagy</subject><subject>Binding</subject><subject>Biology</subject><subject>Bioscience</subject><subject>Calcium</subject><subject>Cancer</subject><subject>cancer metabolism</subject><subject>cancer-associated fibroblasts</subject><subject>Caveolin 1 - metabolism</subject><subject>Cell</subject><subject>Cell Line</subject><subject>Cycle</subject><subject>DNA damage response</subject><subject>DNA Repair</subject><subject>DRAM</subject><subject>Fibroblasts - metabolism</subject><subject>glycolysis</subject><subject>GOLPH3</subject><subject>Humans</subject><subject>Landes</subject><subject>LKB1</subject><subject>Membrane Proteins - metabolism</subject><subject>Mitochondria - metabolism</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Organogenesis</subject><subject>oxidative mitochondrial metabolism (OXPHOS)</subject><subject>Oxidative Stress</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Tumor Microenvironment</subject><subject>tumor stroma</subject><issn>1538-4101</issn><issn>1551-4005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><recordid>eNqFkV9rFDEUxQdRbG0LfgKZx_Zh1vybbMYHoSxqhcIKttC3kMncdCMzyZhktu5H8Fub7bbbig8-JZDfOffknqJ4i9GMYY7faz0jqCHoRXGI6xpXDKH65fZORcUwwgfFmxh_IETEvMGviwNC5oQQzg-L31d3vtJ-GFVIA7hUpmnwoRwgqdb3Ng4fyvMp-XGlbjeldWVawSNidfDg1jZ4d69Uriv9L9upZNeQn5PXK--6YFX_zK88Xd58u1h-P9u6aeU0hFJD38fj4pVRfYSTh_OouP786WpxUV0uv3xdnF9WuuYkVRS1Bhtq2s5wTYxRDRVU4EYT1BJRCwWYA9K8hlowUjcgDGeNaZUARIFpelR83PmOUztAp3P0oHo5BjuosJFeWfn3i7MreevXkjLEhMDZ4PTBIPifE8QkBxu3X1AO_BQlRmSOGMKcPqF5VTEGMPsxGMltc1Jred9cRt89j7UHH6vKwGwH5DkdxNb6qC3k_T2hCJPFgmHB5diZLED_EeThuXare9iHoDuJdcaHQd350HcyqU3vgwm5LBsl_Sf6H153yys</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Salem, Ahmed F.</creator><creator>Whitaker-Menezes, Diana</creator><creator>Lin, Zhao</creator><creator>Martinez-Outschoorn, Ubaldo E.</creator><creator>Tanowitz, Herbert B.</creator><creator>Al-Zoubi, Mazhar Salim</creator><creator>Howell, Anthony</creator><creator>Pestell, Richard G.</creator><creator>Sotgia, Federica</creator><creator>Lisanti, Michael P.</creator><general>Taylor &amp; Francis</general><general>Landes Bioscience</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120701</creationdate><title>Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells</title><author>Salem, Ahmed F. ; Whitaker-Menezes, Diana ; Lin, Zhao ; Martinez-Outschoorn, Ubaldo E. ; Tanowitz, Herbert B. ; Al-Zoubi, Mazhar Salim ; Howell, Anthony ; Pestell, Richard G. ; Sotgia, Federica ; Lisanti, Michael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-30bf1f3fbdf6c2ffa9383819c20b2858ae16e0c65e584259e8f649fba8e03e4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AMP kinase (AMPK)</topic><topic>Autophagy</topic><topic>Binding</topic><topic>Biology</topic><topic>Bioscience</topic><topic>Calcium</topic><topic>Cancer</topic><topic>cancer metabolism</topic><topic>cancer-associated fibroblasts</topic><topic>Caveolin 1 - metabolism</topic><topic>Cell</topic><topic>Cell Line</topic><topic>Cycle</topic><topic>DNA damage response</topic><topic>DNA Repair</topic><topic>DRAM</topic><topic>Fibroblasts - metabolism</topic><topic>glycolysis</topic><topic>GOLPH3</topic><topic>Humans</topic><topic>Landes</topic><topic>LKB1</topic><topic>Membrane Proteins - metabolism</topic><topic>Mitochondria - metabolism</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Organogenesis</topic><topic>oxidative mitochondrial metabolism (OXPHOS)</topic><topic>Oxidative Stress</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Tumor Microenvironment</topic><topic>tumor stroma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salem, Ahmed F.</creatorcontrib><creatorcontrib>Whitaker-Menezes, Diana</creatorcontrib><creatorcontrib>Lin, Zhao</creatorcontrib><creatorcontrib>Martinez-Outschoorn, Ubaldo E.</creatorcontrib><creatorcontrib>Tanowitz, Herbert B.</creatorcontrib><creatorcontrib>Al-Zoubi, Mazhar Salim</creatorcontrib><creatorcontrib>Howell, Anthony</creatorcontrib><creatorcontrib>Pestell, Richard G.</creatorcontrib><creatorcontrib>Sotgia, Federica</creatorcontrib><creatorcontrib>Lisanti, Michael P.</creatorcontrib><collection>Access via Taylor &amp; Francis (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell cycle (Georgetown, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salem, Ahmed F.</au><au>Whitaker-Menezes, Diana</au><au>Lin, Zhao</au><au>Martinez-Outschoorn, Ubaldo E.</au><au>Tanowitz, Herbert B.</au><au>Al-Zoubi, Mazhar Salim</au><au>Howell, Anthony</au><au>Pestell, Richard G.</au><au>Sotgia, Federica</au><au>Lisanti, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells</atitle><jtitle>Cell cycle (Georgetown, Tex.)</jtitle><addtitle>Cell Cycle</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>11</volume><issue>13</issue><spage>2545</spage><epage>2559</epage><pages>2545-2559</pages><issn>1538-4101</issn><eissn>1551-4005</eissn><abstract>Previously, we proposed a new paradigm to explain the compartment-specific role of autophagy in tumor metabolism. In this model, autophagy and mitochondrial dysfunction in the tumor stroma promotes cellular catabolism, which results in the production of recycled nutrients. These chemical building blocks and high-energy "fuels" would then drive the anabolic growth of tumors, via autophagy resistance and oxidative mitochondrial metabolism in cancer cells. We have termed this new form of stromal-epithelial metabolic coupling: "two-compartment tumor metabolism." Here, we stringently tested this energy-transfer hypothesis, by genetically creating (1) constitutively autophagic fibroblasts, with mitochondrial dysfunction or (2) autophagy-resistant cancer cells, with increased mitochondrial function. Autophagic fibroblasts were generated by stably overexpressing key target genes that lead to AMP-kinase activation, such as DRAM and LKB1. Autophagy-resistant cancer cells were derived by overexpressing GOLPH3, which functionally promotes mitochondrial biogenesis. As predicted, DRAM and LKB1 overexpressing fibroblasts were constitutively autophagic and effectively promoted tumor growth. We validated that autophagic fibroblasts showed mitochondrial dysfunction, with increased production of mitochondrial fuels (L-lactate and ketone body accumulation). Conversely, GOLPH3 overexpressing breast cancer cells were autophagy-resistant, and showed signs of increased mitochondrial biogenesis and function, which resulted in increased tumor growth. Thus, autophagy in the tumor stroma and oxidative mitochondrial metabolism (OXPHOS) in cancer cells can both dramatically promote tumor growth, independently of tumor angiogenesis. For the first time, our current studies also link the DNA damage response in the tumor microenvironment with "Warburg-like" cancer metabolism, as DRAM is a DNA damage/repair target gene.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>22722266</pmid><doi>10.4161/cc.20920</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1538-4101
ispartof Cell cycle (Georgetown, Tex.), 2012-07, Vol.11 (13), p.2545-2559
issn 1538-4101
1551-4005
language eng
recordid cdi_proquest_miscellaneous_1027040163
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects AMP kinase (AMPK)
Autophagy
Binding
Biology
Bioscience
Calcium
Cancer
cancer metabolism
cancer-associated fibroblasts
Caveolin 1 - metabolism
Cell
Cell Line
Cycle
DNA damage response
DNA Repair
DRAM
Fibroblasts - metabolism
glycolysis
GOLPH3
Humans
Landes
LKB1
Membrane Proteins - metabolism
Mitochondria - metabolism
Neoplasms - metabolism
Neoplasms - pathology
Organogenesis
oxidative mitochondrial metabolism (OXPHOS)
Oxidative Stress
Protein-Serine-Threonine Kinases - metabolism
Proteins
Proteins - metabolism
Tumor Microenvironment
tumor stroma
title Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T09%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-compartment%20tumor%20metabolism:%20Autophagy%20in%20the%20tumor%20microenvironment%20and%20oxidative%20mitochondrial%20metabolism%20(OXPHOS)%20in%20cancer%20cells&rft.jtitle=Cell%20cycle%20(Georgetown,%20Tex.)&rft.au=Salem,%20Ahmed%20F.&rft.date=2012-07-01&rft.volume=11&rft.issue=13&rft.spage=2545&rft.epage=2559&rft.pages=2545-2559&rft.issn=1538-4101&rft.eissn=1551-4005&rft_id=info:doi/10.4161/cc.20920&rft_dat=%3Cproquest_pubme%3E1027040163%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027040163&rft_id=info:pmid/22722266&rfr_iscdi=true