Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells
Previously, we proposed a new paradigm to explain the compartment-specific role of autophagy in tumor metabolism. In this model, autophagy and mitochondrial dysfunction in the tumor stroma promotes cellular catabolism, which results in the production of recycled nutrients. These chemical building bl...
Gespeichert in:
Veröffentlicht in: | Cell cycle (Georgetown, Tex.) Tex.), 2012-07, Vol.11 (13), p.2545-2559 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2559 |
---|---|
container_issue | 13 |
container_start_page | 2545 |
container_title | Cell cycle (Georgetown, Tex.) |
container_volume | 11 |
creator | Salem, Ahmed F. Whitaker-Menezes, Diana Lin, Zhao Martinez-Outschoorn, Ubaldo E. Tanowitz, Herbert B. Al-Zoubi, Mazhar Salim Howell, Anthony Pestell, Richard G. Sotgia, Federica Lisanti, Michael P. |
description | Previously, we proposed a new paradigm to explain the compartment-specific role of autophagy in tumor metabolism. In this model, autophagy and mitochondrial dysfunction in the tumor stroma promotes cellular catabolism, which results in the production of recycled nutrients. These chemical building blocks and high-energy "fuels" would then drive the anabolic growth of tumors, via autophagy resistance and oxidative mitochondrial metabolism in cancer cells. We have termed this new form of stromal-epithelial metabolic coupling: "two-compartment tumor metabolism." Here, we stringently tested this energy-transfer hypothesis, by genetically creating (1) constitutively autophagic fibroblasts, with mitochondrial dysfunction or (2) autophagy-resistant cancer cells, with increased mitochondrial function. Autophagic fibroblasts were generated by stably overexpressing key target genes that lead to AMP-kinase activation, such as DRAM and LKB1. Autophagy-resistant cancer cells were derived by overexpressing GOLPH3, which functionally promotes mitochondrial biogenesis. As predicted, DRAM and LKB1 overexpressing fibroblasts were constitutively autophagic and effectively promoted tumor growth. We validated that autophagic fibroblasts showed mitochondrial dysfunction, with increased production of mitochondrial fuels (L-lactate and ketone body accumulation). Conversely, GOLPH3 overexpressing breast cancer cells were autophagy-resistant, and showed signs of increased mitochondrial biogenesis and function, which resulted in increased tumor growth. Thus, autophagy in the tumor stroma and oxidative mitochondrial metabolism (OXPHOS) in cancer cells can both dramatically promote tumor growth, independently of tumor angiogenesis. For the first time, our current studies also link the DNA damage response in the tumor microenvironment with "Warburg-like" cancer metabolism, as DRAM is a DNA damage/repair target gene. |
doi_str_mv | 10.4161/cc.20920 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1027040163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1027040163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-30bf1f3fbdf6c2ffa9383819c20b2858ae16e0c65e584259e8f649fba8e03e4c3</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxQdRbG0LfgKZx_Zh1vybbMYHoSxqhcIKttC3kMncdCMzyZhktu5H8Fub7bbbig8-JZDfOffknqJ4i9GMYY7faz0jqCHoRXGI6xpXDKH65fZORcUwwgfFmxh_IETEvMGviwNC5oQQzg-L31d3vtJ-GFVIA7hUpmnwoRwgqdb3Ng4fyvMp-XGlbjeldWVawSNidfDg1jZ4d69Uriv9L9upZNeQn5PXK--6YFX_zK88Xd58u1h-P9u6aeU0hFJD38fj4pVRfYSTh_OouP786WpxUV0uv3xdnF9WuuYkVRS1Bhtq2s5wTYxRDRVU4EYT1BJRCwWYA9K8hlowUjcgDGeNaZUARIFpelR83PmOUztAp3P0oHo5BjuosJFeWfn3i7MreevXkjLEhMDZ4PTBIPifE8QkBxu3X1AO_BQlRmSOGMKcPqF5VTEGMPsxGMltc1Jred9cRt89j7UHH6vKwGwH5DkdxNb6qC3k_T2hCJPFgmHB5diZLED_EeThuXare9iHoDuJdcaHQd350HcyqU3vgwm5LBsl_Sf6H153yys</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027040163</pqid></control><display><type>article</type><title>Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Salem, Ahmed F. ; Whitaker-Menezes, Diana ; Lin, Zhao ; Martinez-Outschoorn, Ubaldo E. ; Tanowitz, Herbert B. ; Al-Zoubi, Mazhar Salim ; Howell, Anthony ; Pestell, Richard G. ; Sotgia, Federica ; Lisanti, Michael P.</creator><creatorcontrib>Salem, Ahmed F. ; Whitaker-Menezes, Diana ; Lin, Zhao ; Martinez-Outschoorn, Ubaldo E. ; Tanowitz, Herbert B. ; Al-Zoubi, Mazhar Salim ; Howell, Anthony ; Pestell, Richard G. ; Sotgia, Federica ; Lisanti, Michael P.</creatorcontrib><description>Previously, we proposed a new paradigm to explain the compartment-specific role of autophagy in tumor metabolism. In this model, autophagy and mitochondrial dysfunction in the tumor stroma promotes cellular catabolism, which results in the production of recycled nutrients. These chemical building blocks and high-energy "fuels" would then drive the anabolic growth of tumors, via autophagy resistance and oxidative mitochondrial metabolism in cancer cells. We have termed this new form of stromal-epithelial metabolic coupling: "two-compartment tumor metabolism." Here, we stringently tested this energy-transfer hypothesis, by genetically creating (1) constitutively autophagic fibroblasts, with mitochondrial dysfunction or (2) autophagy-resistant cancer cells, with increased mitochondrial function. Autophagic fibroblasts were generated by stably overexpressing key target genes that lead to AMP-kinase activation, such as DRAM and LKB1. Autophagy-resistant cancer cells were derived by overexpressing GOLPH3, which functionally promotes mitochondrial biogenesis. As predicted, DRAM and LKB1 overexpressing fibroblasts were constitutively autophagic and effectively promoted tumor growth. We validated that autophagic fibroblasts showed mitochondrial dysfunction, with increased production of mitochondrial fuels (L-lactate and ketone body accumulation). Conversely, GOLPH3 overexpressing breast cancer cells were autophagy-resistant, and showed signs of increased mitochondrial biogenesis and function, which resulted in increased tumor growth. Thus, autophagy in the tumor stroma and oxidative mitochondrial metabolism (OXPHOS) in cancer cells can both dramatically promote tumor growth, independently of tumor angiogenesis. For the first time, our current studies also link the DNA damage response in the tumor microenvironment with "Warburg-like" cancer metabolism, as DRAM is a DNA damage/repair target gene.</description><identifier>ISSN: 1538-4101</identifier><identifier>EISSN: 1551-4005</identifier><identifier>DOI: 10.4161/cc.20920</identifier><identifier>PMID: 22722266</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>AMP kinase (AMPK) ; Autophagy ; Binding ; Biology ; Bioscience ; Calcium ; Cancer ; cancer metabolism ; cancer-associated fibroblasts ; Caveolin 1 - metabolism ; Cell ; Cell Line ; Cycle ; DNA damage response ; DNA Repair ; DRAM ; Fibroblasts - metabolism ; glycolysis ; GOLPH3 ; Humans ; Landes ; LKB1 ; Membrane Proteins - metabolism ; Mitochondria - metabolism ; Neoplasms - metabolism ; Neoplasms - pathology ; Organogenesis ; oxidative mitochondrial metabolism (OXPHOS) ; Oxidative Stress ; Protein-Serine-Threonine Kinases - metabolism ; Proteins ; Proteins - metabolism ; Tumor Microenvironment ; tumor stroma</subject><ispartof>Cell cycle (Georgetown, Tex.), 2012-07, Vol.11 (13), p.2545-2559</ispartof><rights>Copyright © 2012 Landes Bioscience 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-30bf1f3fbdf6c2ffa9383819c20b2858ae16e0c65e584259e8f649fba8e03e4c3</citedby><cites>FETCH-LOGICAL-c562t-30bf1f3fbdf6c2ffa9383819c20b2858ae16e0c65e584259e8f649fba8e03e4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404881/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404881/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22722266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salem, Ahmed F.</creatorcontrib><creatorcontrib>Whitaker-Menezes, Diana</creatorcontrib><creatorcontrib>Lin, Zhao</creatorcontrib><creatorcontrib>Martinez-Outschoorn, Ubaldo E.</creatorcontrib><creatorcontrib>Tanowitz, Herbert B.</creatorcontrib><creatorcontrib>Al-Zoubi, Mazhar Salim</creatorcontrib><creatorcontrib>Howell, Anthony</creatorcontrib><creatorcontrib>Pestell, Richard G.</creatorcontrib><creatorcontrib>Sotgia, Federica</creatorcontrib><creatorcontrib>Lisanti, Michael P.</creatorcontrib><title>Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells</title><title>Cell cycle (Georgetown, Tex.)</title><addtitle>Cell Cycle</addtitle><description>Previously, we proposed a new paradigm to explain the compartment-specific role of autophagy in tumor metabolism. In this model, autophagy and mitochondrial dysfunction in the tumor stroma promotes cellular catabolism, which results in the production of recycled nutrients. These chemical building blocks and high-energy "fuels" would then drive the anabolic growth of tumors, via autophagy resistance and oxidative mitochondrial metabolism in cancer cells. We have termed this new form of stromal-epithelial metabolic coupling: "two-compartment tumor metabolism." Here, we stringently tested this energy-transfer hypothesis, by genetically creating (1) constitutively autophagic fibroblasts, with mitochondrial dysfunction or (2) autophagy-resistant cancer cells, with increased mitochondrial function. Autophagic fibroblasts were generated by stably overexpressing key target genes that lead to AMP-kinase activation, such as DRAM and LKB1. Autophagy-resistant cancer cells were derived by overexpressing GOLPH3, which functionally promotes mitochondrial biogenesis. As predicted, DRAM and LKB1 overexpressing fibroblasts were constitutively autophagic and effectively promoted tumor growth. We validated that autophagic fibroblasts showed mitochondrial dysfunction, with increased production of mitochondrial fuels (L-lactate and ketone body accumulation). Conversely, GOLPH3 overexpressing breast cancer cells were autophagy-resistant, and showed signs of increased mitochondrial biogenesis and function, which resulted in increased tumor growth. Thus, autophagy in the tumor stroma and oxidative mitochondrial metabolism (OXPHOS) in cancer cells can both dramatically promote tumor growth, independently of tumor angiogenesis. For the first time, our current studies also link the DNA damage response in the tumor microenvironment with "Warburg-like" cancer metabolism, as DRAM is a DNA damage/repair target gene.</description><subject>AMP kinase (AMPK)</subject><subject>Autophagy</subject><subject>Binding</subject><subject>Biology</subject><subject>Bioscience</subject><subject>Calcium</subject><subject>Cancer</subject><subject>cancer metabolism</subject><subject>cancer-associated fibroblasts</subject><subject>Caveolin 1 - metabolism</subject><subject>Cell</subject><subject>Cell Line</subject><subject>Cycle</subject><subject>DNA damage response</subject><subject>DNA Repair</subject><subject>DRAM</subject><subject>Fibroblasts - metabolism</subject><subject>glycolysis</subject><subject>GOLPH3</subject><subject>Humans</subject><subject>Landes</subject><subject>LKB1</subject><subject>Membrane Proteins - metabolism</subject><subject>Mitochondria - metabolism</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Organogenesis</subject><subject>oxidative mitochondrial metabolism (OXPHOS)</subject><subject>Oxidative Stress</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Tumor Microenvironment</subject><subject>tumor stroma</subject><issn>1538-4101</issn><issn>1551-4005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><recordid>eNqFkV9rFDEUxQdRbG0LfgKZx_Zh1vybbMYHoSxqhcIKttC3kMncdCMzyZhktu5H8Fub7bbbig8-JZDfOffknqJ4i9GMYY7faz0jqCHoRXGI6xpXDKH65fZORcUwwgfFmxh_IETEvMGviwNC5oQQzg-L31d3vtJ-GFVIA7hUpmnwoRwgqdb3Ng4fyvMp-XGlbjeldWVawSNidfDg1jZ4d69Uriv9L9upZNeQn5PXK--6YFX_zK88Xd58u1h-P9u6aeU0hFJD38fj4pVRfYSTh_OouP786WpxUV0uv3xdnF9WuuYkVRS1Bhtq2s5wTYxRDRVU4EYT1BJRCwWYA9K8hlowUjcgDGeNaZUARIFpelR83PmOUztAp3P0oHo5BjuosJFeWfn3i7MreevXkjLEhMDZ4PTBIPifE8QkBxu3X1AO_BQlRmSOGMKcPqF5VTEGMPsxGMltc1Jred9cRt89j7UHH6vKwGwH5DkdxNb6qC3k_T2hCJPFgmHB5diZLED_EeThuXare9iHoDuJdcaHQd350HcyqU3vgwm5LBsl_Sf6H153yys</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Salem, Ahmed F.</creator><creator>Whitaker-Menezes, Diana</creator><creator>Lin, Zhao</creator><creator>Martinez-Outschoorn, Ubaldo E.</creator><creator>Tanowitz, Herbert B.</creator><creator>Al-Zoubi, Mazhar Salim</creator><creator>Howell, Anthony</creator><creator>Pestell, Richard G.</creator><creator>Sotgia, Federica</creator><creator>Lisanti, Michael P.</creator><general>Taylor & Francis</general><general>Landes Bioscience</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120701</creationdate><title>Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells</title><author>Salem, Ahmed F. ; Whitaker-Menezes, Diana ; Lin, Zhao ; Martinez-Outschoorn, Ubaldo E. ; Tanowitz, Herbert B. ; Al-Zoubi, Mazhar Salim ; Howell, Anthony ; Pestell, Richard G. ; Sotgia, Federica ; Lisanti, Michael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-30bf1f3fbdf6c2ffa9383819c20b2858ae16e0c65e584259e8f649fba8e03e4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AMP kinase (AMPK)</topic><topic>Autophagy</topic><topic>Binding</topic><topic>Biology</topic><topic>Bioscience</topic><topic>Calcium</topic><topic>Cancer</topic><topic>cancer metabolism</topic><topic>cancer-associated fibroblasts</topic><topic>Caveolin 1 - metabolism</topic><topic>Cell</topic><topic>Cell Line</topic><topic>Cycle</topic><topic>DNA damage response</topic><topic>DNA Repair</topic><topic>DRAM</topic><topic>Fibroblasts - metabolism</topic><topic>glycolysis</topic><topic>GOLPH3</topic><topic>Humans</topic><topic>Landes</topic><topic>LKB1</topic><topic>Membrane Proteins - metabolism</topic><topic>Mitochondria - metabolism</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Organogenesis</topic><topic>oxidative mitochondrial metabolism (OXPHOS)</topic><topic>Oxidative Stress</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Tumor Microenvironment</topic><topic>tumor stroma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salem, Ahmed F.</creatorcontrib><creatorcontrib>Whitaker-Menezes, Diana</creatorcontrib><creatorcontrib>Lin, Zhao</creatorcontrib><creatorcontrib>Martinez-Outschoorn, Ubaldo E.</creatorcontrib><creatorcontrib>Tanowitz, Herbert B.</creatorcontrib><creatorcontrib>Al-Zoubi, Mazhar Salim</creatorcontrib><creatorcontrib>Howell, Anthony</creatorcontrib><creatorcontrib>Pestell, Richard G.</creatorcontrib><creatorcontrib>Sotgia, Federica</creatorcontrib><creatorcontrib>Lisanti, Michael P.</creatorcontrib><collection>Access via Taylor & Francis (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell cycle (Georgetown, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salem, Ahmed F.</au><au>Whitaker-Menezes, Diana</au><au>Lin, Zhao</au><au>Martinez-Outschoorn, Ubaldo E.</au><au>Tanowitz, Herbert B.</au><au>Al-Zoubi, Mazhar Salim</au><au>Howell, Anthony</au><au>Pestell, Richard G.</au><au>Sotgia, Federica</au><au>Lisanti, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells</atitle><jtitle>Cell cycle (Georgetown, Tex.)</jtitle><addtitle>Cell Cycle</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>11</volume><issue>13</issue><spage>2545</spage><epage>2559</epage><pages>2545-2559</pages><issn>1538-4101</issn><eissn>1551-4005</eissn><abstract>Previously, we proposed a new paradigm to explain the compartment-specific role of autophagy in tumor metabolism. In this model, autophagy and mitochondrial dysfunction in the tumor stroma promotes cellular catabolism, which results in the production of recycled nutrients. These chemical building blocks and high-energy "fuels" would then drive the anabolic growth of tumors, via autophagy resistance and oxidative mitochondrial metabolism in cancer cells. We have termed this new form of stromal-epithelial metabolic coupling: "two-compartment tumor metabolism." Here, we stringently tested this energy-transfer hypothesis, by genetically creating (1) constitutively autophagic fibroblasts, with mitochondrial dysfunction or (2) autophagy-resistant cancer cells, with increased mitochondrial function. Autophagic fibroblasts were generated by stably overexpressing key target genes that lead to AMP-kinase activation, such as DRAM and LKB1. Autophagy-resistant cancer cells were derived by overexpressing GOLPH3, which functionally promotes mitochondrial biogenesis. As predicted, DRAM and LKB1 overexpressing fibroblasts were constitutively autophagic and effectively promoted tumor growth. We validated that autophagic fibroblasts showed mitochondrial dysfunction, with increased production of mitochondrial fuels (L-lactate and ketone body accumulation). Conversely, GOLPH3 overexpressing breast cancer cells were autophagy-resistant, and showed signs of increased mitochondrial biogenesis and function, which resulted in increased tumor growth. Thus, autophagy in the tumor stroma and oxidative mitochondrial metabolism (OXPHOS) in cancer cells can both dramatically promote tumor growth, independently of tumor angiogenesis. For the first time, our current studies also link the DNA damage response in the tumor microenvironment with "Warburg-like" cancer metabolism, as DRAM is a DNA damage/repair target gene.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>22722266</pmid><doi>10.4161/cc.20920</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1538-4101 |
ispartof | Cell cycle (Georgetown, Tex.), 2012-07, Vol.11 (13), p.2545-2559 |
issn | 1538-4101 1551-4005 |
language | eng |
recordid | cdi_proquest_miscellaneous_1027040163 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | AMP kinase (AMPK) Autophagy Binding Biology Bioscience Calcium Cancer cancer metabolism cancer-associated fibroblasts Caveolin 1 - metabolism Cell Cell Line Cycle DNA damage response DNA Repair DRAM Fibroblasts - metabolism glycolysis GOLPH3 Humans Landes LKB1 Membrane Proteins - metabolism Mitochondria - metabolism Neoplasms - metabolism Neoplasms - pathology Organogenesis oxidative mitochondrial metabolism (OXPHOS) Oxidative Stress Protein-Serine-Threonine Kinases - metabolism Proteins Proteins - metabolism Tumor Microenvironment tumor stroma |
title | Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T09%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-compartment%20tumor%20metabolism:%20Autophagy%20in%20the%20tumor%20microenvironment%20and%20oxidative%20mitochondrial%20metabolism%20(OXPHOS)%20in%20cancer%20cells&rft.jtitle=Cell%20cycle%20(Georgetown,%20Tex.)&rft.au=Salem,%20Ahmed%20F.&rft.date=2012-07-01&rft.volume=11&rft.issue=13&rft.spage=2545&rft.epage=2559&rft.pages=2545-2559&rft.issn=1538-4101&rft.eissn=1551-4005&rft_id=info:doi/10.4161/cc.20920&rft_dat=%3Cproquest_pubme%3E1027040163%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027040163&rft_id=info:pmid/22722266&rfr_iscdi=true |