Liquid Slip on a Nanostructured Surface

We explored a liquid slip, referred to as the Navier slip, at liquid–solid interface. Such a slip is provoked by the physicochemical features of the liquid–solid system. The goal of this study was to investigate the effect of a nanoengineered surface structure on liquid slip by fabricating the self-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2012-07, Vol.28 (28), p.10488-10494
Hauptverfasser: Lee, Doo Jin, Cho, Ki Yeon, Jang, Soohwan, Song, Young Seok, Youn, Jae Ryoun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10494
container_issue 28
container_start_page 10488
container_title Langmuir
container_volume 28
creator Lee, Doo Jin
Cho, Ki Yeon
Jang, Soohwan
Song, Young Seok
Youn, Jae Ryoun
description We explored a liquid slip, referred to as the Navier slip, at liquid–solid interface. Such a slip is provoked by the physicochemical features of the liquid–solid system. The goal of this study was to investigate the effect of a nanoengineered surface structure on liquid slip by fabricating the self-assembly structure of nano Zinc oxide (n-ZnO). We have also examined how the liquid–solid surface interaction controlled by hydrophobic chemical treatment affects the liquid slip. The findings showed that liquid slip increases with decreasing the characteristic length scales (e.g., channel height and depth), resulting in drag reduction. It was also found that dewetted (Cassie) state due to the generation of air gap developed by n-ZnO was more critical for the liquid slip than the minimization of interface interaction. The linear and nonlinear Navier slip models showed that liquid slip behavior is more obvious when increasing the nonlinearity. This study will contribute to understanding of the underlying physics behind fluid slip phenomena, such as the Navier slip for Newtonian liquids and Maxwell’s slip for Newtonian gases.
doi_str_mv 10.1021/la302264t
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1026864970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1026864970</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-f838c7a0f2fa383cad0abe81d54e468856ef309e8b402e670caed2648d7361cc3</originalsourceid><addsrcrecordid>eNpt0DtPwzAQB3ALgWgpDHwBlAUBQ-D8iO2MVcVLqmAA5ujq2FKqNGnteODbY9TSLkw33E_3-BNySeGeAqMPLXJgTIrhiIxpwSAvNFPHZAxK8FwJyUfkLIQlAJRclKdkxJiiCgo1JjfzZhObOvtom3XWdxlmb9j1YfDRDNHb1IjeobHn5MRhG-zFrk7I19Pj5-wln78_v86m8xy5KIbcaa6NQnDMIdfcYA24sJrWhbBCal1I6ziUVi8EMCsVGLR1ulzXiktqDJ-Q2-3cte830YahWjXB2LbFzvYxVOlfqaUoFSR6t6XG9yF466q1b1bovxP6dbTa55Ls1W5sXKxsvZd_QSRwvQMYDLbOY2eacHCSSiiFPjg0oVr20XcpjX8W_gC63nRz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1026864970</pqid></control><display><type>article</type><title>Liquid Slip on a Nanostructured Surface</title><source>ACS Publications</source><creator>Lee, Doo Jin ; Cho, Ki Yeon ; Jang, Soohwan ; Song, Young Seok ; Youn, Jae Ryoun</creator><creatorcontrib>Lee, Doo Jin ; Cho, Ki Yeon ; Jang, Soohwan ; Song, Young Seok ; Youn, Jae Ryoun</creatorcontrib><description>We explored a liquid slip, referred to as the Navier slip, at liquid–solid interface. Such a slip is provoked by the physicochemical features of the liquid–solid system. The goal of this study was to investigate the effect of a nanoengineered surface structure on liquid slip by fabricating the self-assembly structure of nano Zinc oxide (n-ZnO). We have also examined how the liquid–solid surface interaction controlled by hydrophobic chemical treatment affects the liquid slip. The findings showed that liquid slip increases with decreasing the characteristic length scales (e.g., channel height and depth), resulting in drag reduction. It was also found that dewetted (Cassie) state due to the generation of air gap developed by n-ZnO was more critical for the liquid slip than the minimization of interface interaction. The linear and nonlinear Navier slip models showed that liquid slip behavior is more obvious when increasing the nonlinearity. This study will contribute to understanding of the underlying physics behind fluid slip phenomena, such as the Navier slip for Newtonian liquids and Maxwell’s slip for Newtonian gases.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la302264t</identifier><identifier>PMID: 22717057</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry</subject><ispartof>Langmuir, 2012-07, Vol.28 (28), p.10488-10494</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-f838c7a0f2fa383cad0abe81d54e468856ef309e8b402e670caed2648d7361cc3</citedby><cites>FETCH-LOGICAL-a345t-f838c7a0f2fa383cad0abe81d54e468856ef309e8b402e670caed2648d7361cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la302264t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la302264t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26160948$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22717057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Doo Jin</creatorcontrib><creatorcontrib>Cho, Ki Yeon</creatorcontrib><creatorcontrib>Jang, Soohwan</creatorcontrib><creatorcontrib>Song, Young Seok</creatorcontrib><creatorcontrib>Youn, Jae Ryoun</creatorcontrib><title>Liquid Slip on a Nanostructured Surface</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>We explored a liquid slip, referred to as the Navier slip, at liquid–solid interface. Such a slip is provoked by the physicochemical features of the liquid–solid system. The goal of this study was to investigate the effect of a nanoengineered surface structure on liquid slip by fabricating the self-assembly structure of nano Zinc oxide (n-ZnO). We have also examined how the liquid–solid surface interaction controlled by hydrophobic chemical treatment affects the liquid slip. The findings showed that liquid slip increases with decreasing the characteristic length scales (e.g., channel height and depth), resulting in drag reduction. It was also found that dewetted (Cassie) state due to the generation of air gap developed by n-ZnO was more critical for the liquid slip than the minimization of interface interaction. The linear and nonlinear Navier slip models showed that liquid slip behavior is more obvious when increasing the nonlinearity. This study will contribute to understanding of the underlying physics behind fluid slip phenomena, such as the Navier slip for Newtonian liquids and Maxwell’s slip for Newtonian gases.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpt0DtPwzAQB3ALgWgpDHwBlAUBQ-D8iO2MVcVLqmAA5ujq2FKqNGnteODbY9TSLkw33E_3-BNySeGeAqMPLXJgTIrhiIxpwSAvNFPHZAxK8FwJyUfkLIQlAJRclKdkxJiiCgo1JjfzZhObOvtom3XWdxlmb9j1YfDRDNHb1IjeobHn5MRhG-zFrk7I19Pj5-wln78_v86m8xy5KIbcaa6NQnDMIdfcYA24sJrWhbBCal1I6ziUVi8EMCsVGLR1ulzXiktqDJ-Q2-3cte830YahWjXB2LbFzvYxVOlfqaUoFSR6t6XG9yF466q1b1bovxP6dbTa55Ls1W5sXKxsvZd_QSRwvQMYDLbOY2eacHCSSiiFPjg0oVr20XcpjX8W_gC63nRz</recordid><startdate>20120717</startdate><enddate>20120717</enddate><creator>Lee, Doo Jin</creator><creator>Cho, Ki Yeon</creator><creator>Jang, Soohwan</creator><creator>Song, Young Seok</creator><creator>Youn, Jae Ryoun</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120717</creationdate><title>Liquid Slip on a Nanostructured Surface</title><author>Lee, Doo Jin ; Cho, Ki Yeon ; Jang, Soohwan ; Song, Young Seok ; Youn, Jae Ryoun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-f838c7a0f2fa383cad0abe81d54e468856ef309e8b402e670caed2648d7361cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Doo Jin</creatorcontrib><creatorcontrib>Cho, Ki Yeon</creatorcontrib><creatorcontrib>Jang, Soohwan</creatorcontrib><creatorcontrib>Song, Young Seok</creatorcontrib><creatorcontrib>Youn, Jae Ryoun</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Doo Jin</au><au>Cho, Ki Yeon</au><au>Jang, Soohwan</au><au>Song, Young Seok</au><au>Youn, Jae Ryoun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid Slip on a Nanostructured Surface</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2012-07-17</date><risdate>2012</risdate><volume>28</volume><issue>28</issue><spage>10488</spage><epage>10494</epage><pages>10488-10494</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>We explored a liquid slip, referred to as the Navier slip, at liquid–solid interface. Such a slip is provoked by the physicochemical features of the liquid–solid system. The goal of this study was to investigate the effect of a nanoengineered surface structure on liquid slip by fabricating the self-assembly structure of nano Zinc oxide (n-ZnO). We have also examined how the liquid–solid surface interaction controlled by hydrophobic chemical treatment affects the liquid slip. The findings showed that liquid slip increases with decreasing the characteristic length scales (e.g., channel height and depth), resulting in drag reduction. It was also found that dewetted (Cassie) state due to the generation of air gap developed by n-ZnO was more critical for the liquid slip than the minimization of interface interaction. The linear and nonlinear Navier slip models showed that liquid slip behavior is more obvious when increasing the nonlinearity. This study will contribute to understanding of the underlying physics behind fluid slip phenomena, such as the Navier slip for Newtonian liquids and Maxwell’s slip for Newtonian gases.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22717057</pmid><doi>10.1021/la302264t</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2012-07, Vol.28 (28), p.10488-10494
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1026864970
source ACS Publications
subjects Chemistry
Exact sciences and technology
General and physical chemistry
title Liquid Slip on a Nanostructured Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20Slip%20on%20a%20Nanostructured%20Surface&rft.jtitle=Langmuir&rft.au=Lee,%20Doo%20Jin&rft.date=2012-07-17&rft.volume=28&rft.issue=28&rft.spage=10488&rft.epage=10494&rft.pages=10488-10494&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la302264t&rft_dat=%3Cproquest_cross%3E1026864970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1026864970&rft_id=info:pmid/22717057&rfr_iscdi=true