Identification of Nitrite-Reducing Bacteria Using Sequential mRNA Fluorescence In Situ Hybridization and Fluorescence-Assisted Cell Sorting
Sequential mRNA fluorescence in situ hybridization (mRNA FISH) and fluorescence-assisted cell sorting (SmRFF) was used for the identification of nitrite-reducing bacteria in mixed microbial communities. An oligonucleotide probe labeled with horseradish peroxidase (HRP) was used to target mRNA of nir...
Gespeichert in:
Veröffentlicht in: | Microbial ecology 2012-07, Vol.64 (1), p.256-267 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 267 |
---|---|
container_issue | 1 |
container_start_page | 256 |
container_title | Microbial ecology |
container_volume | 64 |
creator | Mota, Cesar R. So, Mark Jason de los Reyes, Francis L. |
description | Sequential mRNA fluorescence in situ hybridization (mRNA FISH) and fluorescence-assisted cell sorting (SmRFF) was used for the identification of nitrite-reducing bacteria in mixed microbial communities. An oligonucleotide probe labeled with horseradish peroxidase (HRP) was used to target mRNA of nirS, the gene that encodes nitrite reductase, the enzyme responsible for the dissimilatory reduction of nitrite to nitric oxide. Clones for nirS expression were constructed and used to provide proof of concept for the SmRFF method. In addition, cells from pure cultures of Pseudomonas stutzen and denitrifying activated sludge were hybridized with the HRP probe, and tyramide signal amplification was performed, conferring a strongly fluorescent signal to cells containing nirS mRNA. Flow cytometryassisted cell sorting was used to detect and physically separate two subgroups from a mixed microbial community: non-fluorescent cells and an enrichment of fluorescent, nitrite-reducing cells. Denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of 16S ribosomal RNA (rRNA) genes were used to compare the fragments amplified from the two sorted subgroups. Sequences from bands isolated from DGGE profiles suggested that the dominant, active nitrite reducers were closely related to Acidovorax BSB421. Furthermore, following mRNA FISH detection of nitrite-reducing bacteria, 16S rRNA FISH was used to detect ammonia-oxidizing and nitrite-oxidizing bacteria on the same activated sludge sample. We believe that the molecular approach described can be useful as a tool to help address the longstanding challenge of linking function to identity in natural and engineered habitats. |
doi_str_mv | 10.1007/s00248-012-0018-x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1024661565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41489804</jstor_id><sourcerecordid>41489804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-f32d3b61b8913e48d2a35138db58bc5fdab6d4249c9f051d71a74996194c533f3</originalsourceid><addsrcrecordid>eNqNkV1rFDEYhYNY7Fr9AV4oARG8ieZ7MpfrYu1CqdC14N2QSTIly2ymJhlo-xf6p810tvUDBK9CyHNOzvseAF4R_IFgXH1MGFOuECYUYUwUun4CFoQzioji35-CBca1QExSdQiep7QtTCUpewYOKWUVVpVcgLu1dSH7zhud_RDg0MEzn6PPDp07OxofLuEnbbKLXsOLNF037sc4aXQPd-dnS3jcj0N0ybhgHFwHuPF5hCc3bfTW386uOtg_MLRMyafsLFy5voebIebi_AIcdLpP7uX-PAIXx5-_rU7Q6dcv69XyFBlBWUYdo5a1krSqJsxxZalmgjBlW6FaIzqrW2k55bWpOyyIrYiueF1LUnMjGOvYEXg_-17FoYyScrPzJVff6-CGMTWkbFVKIqT4HxQrWqt79O1f6HYYYyiD3FMCc8yrQpGZMnFIKbquuYp-p-NNgZqp1GYutSmlNlOpzXXRvNk7j-3O2UfFQ4sFeLcHdDK676IOxqdfnMSKCzpFpDOXylO4dPH3iP_-_fUs2qY8xEdTTriqFebsJ8uVw6k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020504047</pqid></control><display><type>article</type><title>Identification of Nitrite-Reducing Bacteria Using Sequential mRNA Fluorescence In Situ Hybridization and Fluorescence-Assisted Cell Sorting</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mota, Cesar R. ; So, Mark Jason ; de los Reyes, Francis L.</creator><creatorcontrib>Mota, Cesar R. ; So, Mark Jason ; de los Reyes, Francis L.</creatorcontrib><description>Sequential mRNA fluorescence in situ hybridization (mRNA FISH) and fluorescence-assisted cell sorting (SmRFF) was used for the identification of nitrite-reducing bacteria in mixed microbial communities. An oligonucleotide probe labeled with horseradish peroxidase (HRP) was used to target mRNA of nirS, the gene that encodes nitrite reductase, the enzyme responsible for the dissimilatory reduction of nitrite to nitric oxide. Clones for nirS expression were constructed and used to provide proof of concept for the SmRFF method. In addition, cells from pure cultures of Pseudomonas stutzen and denitrifying activated sludge were hybridized with the HRP probe, and tyramide signal amplification was performed, conferring a strongly fluorescent signal to cells containing nirS mRNA. Flow cytometryassisted cell sorting was used to detect and physically separate two subgroups from a mixed microbial community: non-fluorescent cells and an enrichment of fluorescent, nitrite-reducing cells. Denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of 16S ribosomal RNA (rRNA) genes were used to compare the fragments amplified from the two sorted subgroups. Sequences from bands isolated from DGGE profiles suggested that the dominant, active nitrite reducers were closely related to Acidovorax BSB421. Furthermore, following mRNA FISH detection of nitrite-reducing bacteria, 16S rRNA FISH was used to detect ammonia-oxidizing and nitrite-oxidizing bacteria on the same activated sludge sample. We believe that the molecular approach described can be useful as a tool to help address the longstanding challenge of linking function to identity in natural and engineered habitats.</description><identifier>ISSN: 0095-3628</identifier><identifier>EISSN: 1432-184X</identifier><identifier>DOI: 10.1007/s00248-012-0018-x</identifier><identifier>PMID: 22370876</identifier><identifier>CODEN: MCBEBU</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Acidovorax ; Activated sludge ; Bacteria ; Bacteria - enzymology ; Bacteria - genetics ; Bacteria - isolation & purification ; Bacteria - metabolism ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological and medical sciences ; Biomedical and Life Sciences ; Comamonadaceae ; Ecology ; Flow Cytometry - methods ; Fluorescence ; Fluorescence in situ hybridization ; Fundamental and applied biological sciences. Psychology ; Geoecology/Natural Processes ; Hybridization ; In Situ Hybridization, Fluorescence - methods ; Life Sciences ; Messenger RNA ; METHODS ; Microbial activity ; Microbial Ecology ; Microbiology ; Microorganisms ; Nature Conservation ; Nitric oxide ; Nitrite Reductases - genetics ; Nitrite Reductases - metabolism ; Nitrites ; Nitrites - metabolism ; Oligonucleotide probes ; Oxidation-Reduction ; Polymerase chain reaction ; Pseudomonas stutzeri ; Pseudomonas stutzeri - genetics ; Pseudomonas stutzeri - isolation & purification ; Pseudomonas stutzeri - metabolism ; Sewage - chemistry ; Sewage - microbiology ; Water Quality/Water Pollution</subject><ispartof>Microbial ecology, 2012-07, Vol.64 (1), p.256-267</ispartof><rights>2012 Springer Science+Business Media, LLC</rights><rights>Springer Science+Business Media, LLC 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-f32d3b61b8913e48d2a35138db58bc5fdab6d4249c9f051d71a74996194c533f3</citedby><cites>FETCH-LOGICAL-c523t-f32d3b61b8913e48d2a35138db58bc5fdab6d4249c9f051d71a74996194c533f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41489804$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41489804$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27923,27924,41487,42556,51318,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26084525$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22370876$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mota, Cesar R.</creatorcontrib><creatorcontrib>So, Mark Jason</creatorcontrib><creatorcontrib>de los Reyes, Francis L.</creatorcontrib><title>Identification of Nitrite-Reducing Bacteria Using Sequential mRNA Fluorescence In Situ Hybridization and Fluorescence-Assisted Cell Sorting</title><title>Microbial ecology</title><addtitle>Microb Ecol</addtitle><addtitle>Microb Ecol</addtitle><description>Sequential mRNA fluorescence in situ hybridization (mRNA FISH) and fluorescence-assisted cell sorting (SmRFF) was used for the identification of nitrite-reducing bacteria in mixed microbial communities. An oligonucleotide probe labeled with horseradish peroxidase (HRP) was used to target mRNA of nirS, the gene that encodes nitrite reductase, the enzyme responsible for the dissimilatory reduction of nitrite to nitric oxide. Clones for nirS expression were constructed and used to provide proof of concept for the SmRFF method. In addition, cells from pure cultures of Pseudomonas stutzen and denitrifying activated sludge were hybridized with the HRP probe, and tyramide signal amplification was performed, conferring a strongly fluorescent signal to cells containing nirS mRNA. Flow cytometryassisted cell sorting was used to detect and physically separate two subgroups from a mixed microbial community: non-fluorescent cells and an enrichment of fluorescent, nitrite-reducing cells. Denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of 16S ribosomal RNA (rRNA) genes were used to compare the fragments amplified from the two sorted subgroups. Sequences from bands isolated from DGGE profiles suggested that the dominant, active nitrite reducers were closely related to Acidovorax BSB421. Furthermore, following mRNA FISH detection of nitrite-reducing bacteria, 16S rRNA FISH was used to detect ammonia-oxidizing and nitrite-oxidizing bacteria on the same activated sludge sample. We believe that the molecular approach described can be useful as a tool to help address the longstanding challenge of linking function to identity in natural and engineered habitats.</description><subject>Acidovorax</subject><subject>Activated sludge</subject><subject>Bacteria</subject><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Comamonadaceae</subject><subject>Ecology</subject><subject>Flow Cytometry - methods</subject><subject>Fluorescence</subject><subject>Fluorescence in situ hybridization</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geoecology/Natural Processes</subject><subject>Hybridization</subject><subject>In Situ Hybridization, Fluorescence - methods</subject><subject>Life Sciences</subject><subject>Messenger RNA</subject><subject>METHODS</subject><subject>Microbial activity</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Nature Conservation</subject><subject>Nitric oxide</subject><subject>Nitrite Reductases - genetics</subject><subject>Nitrite Reductases - metabolism</subject><subject>Nitrites</subject><subject>Nitrites - metabolism</subject><subject>Oligonucleotide probes</subject><subject>Oxidation-Reduction</subject><subject>Polymerase chain reaction</subject><subject>Pseudomonas stutzeri</subject><subject>Pseudomonas stutzeri - genetics</subject><subject>Pseudomonas stutzeri - isolation & purification</subject><subject>Pseudomonas stutzeri - metabolism</subject><subject>Sewage - chemistry</subject><subject>Sewage - microbiology</subject><subject>Water Quality/Water Pollution</subject><issn>0095-3628</issn><issn>1432-184X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV1rFDEYhYNY7Fr9AV4oARG8ieZ7MpfrYu1CqdC14N2QSTIly2ymJhlo-xf6p810tvUDBK9CyHNOzvseAF4R_IFgXH1MGFOuECYUYUwUun4CFoQzioji35-CBca1QExSdQiep7QtTCUpewYOKWUVVpVcgLu1dSH7zhud_RDg0MEzn6PPDp07OxofLuEnbbKLXsOLNF037sc4aXQPd-dnS3jcj0N0ybhgHFwHuPF5hCc3bfTW386uOtg_MLRMyafsLFy5voebIebi_AIcdLpP7uX-PAIXx5-_rU7Q6dcv69XyFBlBWUYdo5a1krSqJsxxZalmgjBlW6FaIzqrW2k55bWpOyyIrYiueF1LUnMjGOvYEXg_-17FoYyScrPzJVff6-CGMTWkbFVKIqT4HxQrWqt79O1f6HYYYyiD3FMCc8yrQpGZMnFIKbquuYp-p-NNgZqp1GYutSmlNlOpzXXRvNk7j-3O2UfFQ4sFeLcHdDK676IOxqdfnMSKCzpFpDOXylO4dPH3iP_-_fUs2qY8xEdTTriqFebsJ8uVw6k</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Mota, Cesar R.</creator><creator>So, Mark Jason</creator><creator>de los Reyes, Francis L.</creator><general>Springer Science + Business Media</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20120701</creationdate><title>Identification of Nitrite-Reducing Bacteria Using Sequential mRNA Fluorescence In Situ Hybridization and Fluorescence-Assisted Cell Sorting</title><author>Mota, Cesar R. ; So, Mark Jason ; de los Reyes, Francis L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-f32d3b61b8913e48d2a35138db58bc5fdab6d4249c9f051d71a74996194c533f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acidovorax</topic><topic>Activated sludge</topic><topic>Bacteria</topic><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Comamonadaceae</topic><topic>Ecology</topic><topic>Flow Cytometry - methods</topic><topic>Fluorescence</topic><topic>Fluorescence in situ hybridization</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geoecology/Natural Processes</topic><topic>Hybridization</topic><topic>In Situ Hybridization, Fluorescence - methods</topic><topic>Life Sciences</topic><topic>Messenger RNA</topic><topic>METHODS</topic><topic>Microbial activity</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Nature Conservation</topic><topic>Nitric oxide</topic><topic>Nitrite Reductases - genetics</topic><topic>Nitrite Reductases - metabolism</topic><topic>Nitrites</topic><topic>Nitrites - metabolism</topic><topic>Oligonucleotide probes</topic><topic>Oxidation-Reduction</topic><topic>Polymerase chain reaction</topic><topic>Pseudomonas stutzeri</topic><topic>Pseudomonas stutzeri - genetics</topic><topic>Pseudomonas stutzeri - isolation & purification</topic><topic>Pseudomonas stutzeri - metabolism</topic><topic>Sewage - chemistry</topic><topic>Sewage - microbiology</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mota, Cesar R.</creatorcontrib><creatorcontrib>So, Mark Jason</creatorcontrib><creatorcontrib>de los Reyes, Francis L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Microbial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mota, Cesar R.</au><au>So, Mark Jason</au><au>de los Reyes, Francis L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Nitrite-Reducing Bacteria Using Sequential mRNA Fluorescence In Situ Hybridization and Fluorescence-Assisted Cell Sorting</atitle><jtitle>Microbial ecology</jtitle><stitle>Microb Ecol</stitle><addtitle>Microb Ecol</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>64</volume><issue>1</issue><spage>256</spage><epage>267</epage><pages>256-267</pages><issn>0095-3628</issn><eissn>1432-184X</eissn><coden>MCBEBU</coden><abstract>Sequential mRNA fluorescence in situ hybridization (mRNA FISH) and fluorescence-assisted cell sorting (SmRFF) was used for the identification of nitrite-reducing bacteria in mixed microbial communities. An oligonucleotide probe labeled with horseradish peroxidase (HRP) was used to target mRNA of nirS, the gene that encodes nitrite reductase, the enzyme responsible for the dissimilatory reduction of nitrite to nitric oxide. Clones for nirS expression were constructed and used to provide proof of concept for the SmRFF method. In addition, cells from pure cultures of Pseudomonas stutzen and denitrifying activated sludge were hybridized with the HRP probe, and tyramide signal amplification was performed, conferring a strongly fluorescent signal to cells containing nirS mRNA. Flow cytometryassisted cell sorting was used to detect and physically separate two subgroups from a mixed microbial community: non-fluorescent cells and an enrichment of fluorescent, nitrite-reducing cells. Denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of 16S ribosomal RNA (rRNA) genes were used to compare the fragments amplified from the two sorted subgroups. Sequences from bands isolated from DGGE profiles suggested that the dominant, active nitrite reducers were closely related to Acidovorax BSB421. Furthermore, following mRNA FISH detection of nitrite-reducing bacteria, 16S rRNA FISH was used to detect ammonia-oxidizing and nitrite-oxidizing bacteria on the same activated sludge sample. We believe that the molecular approach described can be useful as a tool to help address the longstanding challenge of linking function to identity in natural and engineered habitats.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><pmid>22370876</pmid><doi>10.1007/s00248-012-0018-x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-3628 |
ispartof | Microbial ecology, 2012-07, Vol.64 (1), p.256-267 |
issn | 0095-3628 1432-184X |
language | eng |
recordid | cdi_proquest_miscellaneous_1024661565 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings |
subjects | Acidovorax Activated sludge Bacteria Bacteria - enzymology Bacteria - genetics Bacteria - isolation & purification Bacteria - metabolism Bacterial Proteins - genetics Bacterial Proteins - metabolism Biological and medical sciences Biomedical and Life Sciences Comamonadaceae Ecology Flow Cytometry - methods Fluorescence Fluorescence in situ hybridization Fundamental and applied biological sciences. Psychology Geoecology/Natural Processes Hybridization In Situ Hybridization, Fluorescence - methods Life Sciences Messenger RNA METHODS Microbial activity Microbial Ecology Microbiology Microorganisms Nature Conservation Nitric oxide Nitrite Reductases - genetics Nitrite Reductases - metabolism Nitrites Nitrites - metabolism Oligonucleotide probes Oxidation-Reduction Polymerase chain reaction Pseudomonas stutzeri Pseudomonas stutzeri - genetics Pseudomonas stutzeri - isolation & purification Pseudomonas stutzeri - metabolism Sewage - chemistry Sewage - microbiology Water Quality/Water Pollution |
title | Identification of Nitrite-Reducing Bacteria Using Sequential mRNA Fluorescence In Situ Hybridization and Fluorescence-Assisted Cell Sorting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Nitrite-Reducing%20Bacteria%20Using%20Sequential%20mRNA%20Fluorescence%20In%20Situ%20Hybridization%20and%20Fluorescence-Assisted%20Cell%20Sorting&rft.jtitle=Microbial%20ecology&rft.au=Mota,%20Cesar%20R.&rft.date=2012-07-01&rft.volume=64&rft.issue=1&rft.spage=256&rft.epage=267&rft.pages=256-267&rft.issn=0095-3628&rft.eissn=1432-184X&rft.coden=MCBEBU&rft_id=info:doi/10.1007/s00248-012-0018-x&rft_dat=%3Cjstor_proqu%3E41489804%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020504047&rft_id=info:pmid/22370876&rft_jstor_id=41489804&rfr_iscdi=true |