Horizontal transport affecting trace gas seasonality in the Tropical Tropopause Layer (TTL)
We analyze horizontal transport from midlatitudes into the tropics (in‐mixing) and its impact on seasonal variations of ozone, carbon monoxide and water vapor in the Tropical Tropopause Layer (TTL). For this purpose, we use three‐dimensional backward trajectories, driven by ECMWF ERA‐Interim winds,...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Atmospheres 2012-05, Vol.117 (D9), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | D9 |
container_start_page | |
container_title | Journal of Geophysical Research: Atmospheres |
container_volume | 117 |
creator | Ploeger, F. Konopka, P. Müller, R. Fueglistaler, S. Schmidt, T. Manners, J. C. Grooß, J.-U. Günther, G. Forster, P. M. Riese, M. |
description | We analyze horizontal transport from midlatitudes into the tropics (in‐mixing) and its impact on seasonal variations of ozone, carbon monoxide and water vapor in the Tropical Tropopause Layer (TTL). For this purpose, we use three‐dimensional backward trajectories, driven by ECMWF ERA‐Interim winds, and a conceptual one‐dimensional model of the chemical composition of the TTL. We find that the fraction of in‐mixed midlatitude air shows an annual cycle with maximum during NH summer, resulting from the superposition of two inversely phased annual cycles for in‐mixing from the NH and SH, respectively. In‐mixing is driven by the monsoonal upper‐level anticyclonic circulations. This circulation pattern is dominated by the Southeast Asian summer monsoon and, correspondingly, in‐mixing shows an annual cycle. The impact of in‐mixing on TTL mixing ratios depends on the in‐mixed fraction of midlatitude air and on the meridional gradient of the particular species. For CO the meridional gradient and consequently the effect of in‐mixing is weak. For water vapor, in‐mixing effects are negligible. For ozone, the meridional gradient is large and the contribution of in‐mixing to the ozone maximum during NH summer is about 50%. This in‐mixing contribution is not sensitive to the tropical ascent velocity, which is about 40% too fast in ERA‐Interim. As photochemically produced ozone in the TTL shows no distinct summer maximum, the ozone annual anomaly in the upper TTL turns out to be mainly forced by in‐mixing of ozone‐rich extratropical air during NH summer.
Key Points
Horizontal transport affects O3 annual cycle in TTL ‐ H2O and CO unaffected
Horizontal transport into TTL is driven by monsoon anticyclones
At least 30% summer O3 and 65% annual amplitude linked to horizontal transport |
doi_str_mv | 10.1029/2011JD017267 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1024658940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024658116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5450-6a15def6fa2b979e70437adcaaaf2dbfef5ce2f593eaf769121b76d5baa6ff6c3</originalsourceid><addsrcrecordid>eNqNkUFrFDEYhkNRcKm9-QMCIlToaJKZJDPH0q1by1BFVzz0EL7NfmnTTifTZBZdf70Zt5TiQcwlITzPm483hLzi7B1nonkvGOfnc8a1UHqPzASXqhCCiWdkxnhVF0wI_YIcpHTD8qqkqhifkcuzEP2v0I_Q0TFCn4YQRwrOoR19fzXdWaRXkGhCSKGHzo9b6ns6XiNdxjB4m83pEAbYJKQtbDHSw-WyffuSPHfQJTx42PfJtw-ny5Ozov20-Hhy3BZWVpIVCrhco1MOxKrRDWpWlRrWFgCcWK8cOmlRONmUCE6rhgu-0motVwDKOWXLfXK4yx1iuN9gGs2dTxa7DnoMm2RyPZWSdVOx_0U5Vxl9_Rd6EzYxFzBRvCrz6Epm6mhH2RhSiujMEP0dxG2GprTGPP2XjL95CIWUi3O5cevToyNko8v6z5zljvvhO9z-M9OcL77Mua7VZBU7y6cRfz5aEG9NfltL8_1iYT6zuv1a6rm5KH8D0XyqDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1014345065</pqid></control><display><type>article</type><title>Horizontal transport affecting trace gas seasonality in the Tropical Tropopause Layer (TTL)</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Ploeger, F. ; Konopka, P. ; Müller, R. ; Fueglistaler, S. ; Schmidt, T. ; Manners, J. C. ; Grooß, J.-U. ; Günther, G. ; Forster, P. M. ; Riese, M.</creator><creatorcontrib>Ploeger, F. ; Konopka, P. ; Müller, R. ; Fueglistaler, S. ; Schmidt, T. ; Manners, J. C. ; Grooß, J.-U. ; Günther, G. ; Forster, P. M. ; Riese, M.</creatorcontrib><description>We analyze horizontal transport from midlatitudes into the tropics (in‐mixing) and its impact on seasonal variations of ozone, carbon monoxide and water vapor in the Tropical Tropopause Layer (TTL). For this purpose, we use three‐dimensional backward trajectories, driven by ECMWF ERA‐Interim winds, and a conceptual one‐dimensional model of the chemical composition of the TTL. We find that the fraction of in‐mixed midlatitude air shows an annual cycle with maximum during NH summer, resulting from the superposition of two inversely phased annual cycles for in‐mixing from the NH and SH, respectively. In‐mixing is driven by the monsoonal upper‐level anticyclonic circulations. This circulation pattern is dominated by the Southeast Asian summer monsoon and, correspondingly, in‐mixing shows an annual cycle. The impact of in‐mixing on TTL mixing ratios depends on the in‐mixed fraction of midlatitude air and on the meridional gradient of the particular species. For CO the meridional gradient and consequently the effect of in‐mixing is weak. For water vapor, in‐mixing effects are negligible. For ozone, the meridional gradient is large and the contribution of in‐mixing to the ozone maximum during NH summer is about 50%. This in‐mixing contribution is not sensitive to the tropical ascent velocity, which is about 40% too fast in ERA‐Interim. As photochemically produced ozone in the TTL shows no distinct summer maximum, the ozone annual anomaly in the upper TTL turns out to be mainly forced by in‐mixing of ozone‐rich extratropical air during NH summer.
Key Points
Horizontal transport affects O3 annual cycle in TTL ‐ H2O and CO unaffected
Horizontal transport into TTL is driven by monsoon anticyclones
At least 30% summer O3 and 65% annual amplitude linked to horizontal transport</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2011JD017267</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Atmospheric sciences ; Carbon monoxide ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geophysics ; horizontal transport ; Latitude ; monsoon ; Ozone ; Seasonal variations ; seasonality ; Summer ; trajectories ; Tropical environments ; Tropopause ; TTL ; Water vapor</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2012-05, Vol.117 (D9), p.n/a</ispartof><rights>Copyright 2012 by the American Geophysical Union</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5450-6a15def6fa2b979e70437adcaaaf2dbfef5ce2f593eaf769121b76d5baa6ff6c3</citedby><cites>FETCH-LOGICAL-c5450-6a15def6fa2b979e70437adcaaaf2dbfef5ce2f593eaf769121b76d5baa6ff6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011JD017267$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011JD017267$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,11512,27922,27923,45572,45573,46407,46466,46831,46890</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25973840$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ploeger, F.</creatorcontrib><creatorcontrib>Konopka, P.</creatorcontrib><creatorcontrib>Müller, R.</creatorcontrib><creatorcontrib>Fueglistaler, S.</creatorcontrib><creatorcontrib>Schmidt, T.</creatorcontrib><creatorcontrib>Manners, J. C.</creatorcontrib><creatorcontrib>Grooß, J.-U.</creatorcontrib><creatorcontrib>Günther, G.</creatorcontrib><creatorcontrib>Forster, P. M.</creatorcontrib><creatorcontrib>Riese, M.</creatorcontrib><title>Horizontal transport affecting trace gas seasonality in the Tropical Tropopause Layer (TTL)</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>We analyze horizontal transport from midlatitudes into the tropics (in‐mixing) and its impact on seasonal variations of ozone, carbon monoxide and water vapor in the Tropical Tropopause Layer (TTL). For this purpose, we use three‐dimensional backward trajectories, driven by ECMWF ERA‐Interim winds, and a conceptual one‐dimensional model of the chemical composition of the TTL. We find that the fraction of in‐mixed midlatitude air shows an annual cycle with maximum during NH summer, resulting from the superposition of two inversely phased annual cycles for in‐mixing from the NH and SH, respectively. In‐mixing is driven by the monsoonal upper‐level anticyclonic circulations. This circulation pattern is dominated by the Southeast Asian summer monsoon and, correspondingly, in‐mixing shows an annual cycle. The impact of in‐mixing on TTL mixing ratios depends on the in‐mixed fraction of midlatitude air and on the meridional gradient of the particular species. For CO the meridional gradient and consequently the effect of in‐mixing is weak. For water vapor, in‐mixing effects are negligible. For ozone, the meridional gradient is large and the contribution of in‐mixing to the ozone maximum during NH summer is about 50%. This in‐mixing contribution is not sensitive to the tropical ascent velocity, which is about 40% too fast in ERA‐Interim. As photochemically produced ozone in the TTL shows no distinct summer maximum, the ozone annual anomaly in the upper TTL turns out to be mainly forced by in‐mixing of ozone‐rich extratropical air during NH summer.
Key Points
Horizontal transport affects O3 annual cycle in TTL ‐ H2O and CO unaffected
Horizontal transport into TTL is driven by monsoon anticyclones
At least 30% summer O3 and 65% annual amplitude linked to horizontal transport</description><subject>Atmospheric sciences</subject><subject>Carbon monoxide</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>horizontal transport</subject><subject>Latitude</subject><subject>monsoon</subject><subject>Ozone</subject><subject>Seasonal variations</subject><subject>seasonality</subject><subject>Summer</subject><subject>trajectories</subject><subject>Tropical environments</subject><subject>Tropopause</subject><subject>TTL</subject><subject>Water vapor</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkUFrFDEYhkNRcKm9-QMCIlToaJKZJDPH0q1by1BFVzz0EL7NfmnTTifTZBZdf70Zt5TiQcwlITzPm483hLzi7B1nonkvGOfnc8a1UHqPzASXqhCCiWdkxnhVF0wI_YIcpHTD8qqkqhifkcuzEP2v0I_Q0TFCn4YQRwrOoR19fzXdWaRXkGhCSKGHzo9b6ns6XiNdxjB4m83pEAbYJKQtbDHSw-WyffuSPHfQJTx42PfJtw-ny5Ozov20-Hhy3BZWVpIVCrhco1MOxKrRDWpWlRrWFgCcWK8cOmlRONmUCE6rhgu-0motVwDKOWXLfXK4yx1iuN9gGs2dTxa7DnoMm2RyPZWSdVOx_0U5Vxl9_Rd6EzYxFzBRvCrz6Epm6mhH2RhSiujMEP0dxG2GprTGPP2XjL95CIWUi3O5cevToyNko8v6z5zljvvhO9z-M9OcL77Mua7VZBU7y6cRfz5aEG9NfltL8_1iYT6zuv1a6rm5KH8D0XyqDA</recordid><startdate>20120509</startdate><enddate>20120509</enddate><creator>Ploeger, F.</creator><creator>Konopka, P.</creator><creator>Müller, R.</creator><creator>Fueglistaler, S.</creator><creator>Schmidt, T.</creator><creator>Manners, J. C.</creator><creator>Grooß, J.-U.</creator><creator>Günther, G.</creator><creator>Forster, P. M.</creator><creator>Riese, M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7TV</scope></search><sort><creationdate>20120509</creationdate><title>Horizontal transport affecting trace gas seasonality in the Tropical Tropopause Layer (TTL)</title><author>Ploeger, F. ; Konopka, P. ; Müller, R. ; Fueglistaler, S. ; Schmidt, T. ; Manners, J. C. ; Grooß, J.-U. ; Günther, G. ; Forster, P. M. ; Riese, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5450-6a15def6fa2b979e70437adcaaaf2dbfef5ce2f593eaf769121b76d5baa6ff6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Atmospheric sciences</topic><topic>Carbon monoxide</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>horizontal transport</topic><topic>Latitude</topic><topic>monsoon</topic><topic>Ozone</topic><topic>Seasonal variations</topic><topic>seasonality</topic><topic>Summer</topic><topic>trajectories</topic><topic>Tropical environments</topic><topic>Tropopause</topic><topic>TTL</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ploeger, F.</creatorcontrib><creatorcontrib>Konopka, P.</creatorcontrib><creatorcontrib>Müller, R.</creatorcontrib><creatorcontrib>Fueglistaler, S.</creatorcontrib><creatorcontrib>Schmidt, T.</creatorcontrib><creatorcontrib>Manners, J. C.</creatorcontrib><creatorcontrib>Grooß, J.-U.</creatorcontrib><creatorcontrib>Günther, G.</creatorcontrib><creatorcontrib>Forster, P. M.</creatorcontrib><creatorcontrib>Riese, M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Pollution Abstracts</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ploeger, F.</au><au>Konopka, P.</au><au>Müller, R.</au><au>Fueglistaler, S.</au><au>Schmidt, T.</au><au>Manners, J. C.</au><au>Grooß, J.-U.</au><au>Günther, G.</au><au>Forster, P. M.</au><au>Riese, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Horizontal transport affecting trace gas seasonality in the Tropical Tropopause Layer (TTL)</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2012-05-09</date><risdate>2012</risdate><volume>117</volume><issue>D9</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>We analyze horizontal transport from midlatitudes into the tropics (in‐mixing) and its impact on seasonal variations of ozone, carbon monoxide and water vapor in the Tropical Tropopause Layer (TTL). For this purpose, we use three‐dimensional backward trajectories, driven by ECMWF ERA‐Interim winds, and a conceptual one‐dimensional model of the chemical composition of the TTL. We find that the fraction of in‐mixed midlatitude air shows an annual cycle with maximum during NH summer, resulting from the superposition of two inversely phased annual cycles for in‐mixing from the NH and SH, respectively. In‐mixing is driven by the monsoonal upper‐level anticyclonic circulations. This circulation pattern is dominated by the Southeast Asian summer monsoon and, correspondingly, in‐mixing shows an annual cycle. The impact of in‐mixing on TTL mixing ratios depends on the in‐mixed fraction of midlatitude air and on the meridional gradient of the particular species. For CO the meridional gradient and consequently the effect of in‐mixing is weak. For water vapor, in‐mixing effects are negligible. For ozone, the meridional gradient is large and the contribution of in‐mixing to the ozone maximum during NH summer is about 50%. This in‐mixing contribution is not sensitive to the tropical ascent velocity, which is about 40% too fast in ERA‐Interim. As photochemically produced ozone in the TTL shows no distinct summer maximum, the ozone annual anomaly in the upper TTL turns out to be mainly forced by in‐mixing of ozone‐rich extratropical air during NH summer.
Key Points
Horizontal transport affects O3 annual cycle in TTL ‐ H2O and CO unaffected
Horizontal transport into TTL is driven by monsoon anticyclones
At least 30% summer O3 and 65% annual amplitude linked to horizontal transport</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011JD017267</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Atmospheres, 2012-05, Vol.117 (D9), p.n/a |
issn | 0148-0227 2169-897X 2156-2202 2169-8996 |
language | eng |
recordid | cdi_proquest_miscellaneous_1024658940 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection |
subjects | Atmospheric sciences Carbon monoxide Earth sciences Earth, ocean, space Exact sciences and technology Geophysics horizontal transport Latitude monsoon Ozone Seasonal variations seasonality Summer trajectories Tropical environments Tropopause TTL Water vapor |
title | Horizontal transport affecting trace gas seasonality in the Tropical Tropopause Layer (TTL) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Horizontal%20transport%20affecting%20trace%20gas%20seasonality%20in%20the%20Tropical%20Tropopause%20Layer%20(TTL)&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Ploeger,%20F.&rft.date=2012-05-09&rft.volume=117&rft.issue=D9&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2011JD017267&rft_dat=%3Cproquest_cross%3E1024658116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1014345065&rft_id=info:pmid/&rfr_iscdi=true |