Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols

Aqueous extracts of secondary organic aerosols (SOA) generated from the ozonolysis of d‐limonene were subjected to dissolution, evaporation, and re‐dissolution in the presence and absence of ammonium sulfate (AS). Evaporation with AS at pH 4–9 produced chromophores that were stable with respect to h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. D. (Atmospheres) 2012-01, Vol.117 (D1), p.n/a
Hauptverfasser: Nguyen, Tran B., Lee, Paula B., Updyke, Katelyn M., Bones, David L., Laskin, Julia, Laskin, Alexander, Nizkorodov, Sergey A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D1
container_start_page
container_title Journal of Geophysical Research. D. (Atmospheres)
container_volume 117
creator Nguyen, Tran B.
Lee, Paula B.
Updyke, Katelyn M.
Bones, David L.
Laskin, Julia
Laskin, Alexander
Nizkorodov, Sergey A.
description Aqueous extracts of secondary organic aerosols (SOA) generated from the ozonolysis of d‐limonene were subjected to dissolution, evaporation, and re‐dissolution in the presence and absence of ammonium sulfate (AS). Evaporation with AS at pH 4–9 produced chromophores that were stable with respect to hydrolysis and had a distinctive absorption band at 500 nm. Evaporation accelerated the rate of chromophore formation by at least three orders of magnitude compared to the reaction in aqueous solution, which produced similar compounds. Absorption spectroscopy and high‐resolution nanospray desorption electrospray ionization (nano‐DESI) mass spectrometry experiments suggested that the molar fraction of the chromophores was small (105 L mol−1 cm−1 at 500 nm) increased the effective mass absorption coefficient of the residual organics in excess of 103 cm2 g−1 ‐ a dramatic effect on the optical properties from minor constituents. Evaporation of SOA extracts in the absence of AS resulted in the production of colored compounds only when the SOA extract was acidified to pH ∼ 2 with sulfuric acid. These chromophores were produced by acid‐catalyzed aldol condensation, followed by a conversion into organosulfates. The presence of organosulfates was confirmed by high resolution mass spectrometry experiments. Results of this study suggest that evaporation of cloud or fog droplets containing dissolved organics leads to significant modification of the molecular composition and serves as a potentially important source of light‐absorbing compounds. Key Points Evaporation of droplets generates organic compounds absorbing visible radiation Cloud cycling significantly changes the composition of organic aerosols
doi_str_mv 10.1029/2011JD016944
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1024658048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024658048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5001-32683632ada0474c689441465dc0e171c879861fef6a711a69e6d8f06eff141d3</originalsourceid><addsrcrecordid>eNp9kd1uFCEYhidGEzdtz7wAYmLigaN8DMPPoWntbutGE38TTwjLwJY6AyvMWPcWvGrZTLN6JCcE8rwPvFBVTwC_BEzkK4IBri8wMEnpg2pBoGU1IZg8rBYYqKgxIfxxdZbzLS6DtoxiWFS_L2Ma9OhjQNGh4McUtzbUSIcO5al3U6pNDKP2wYct6v32Zqz1Jse0OaxNHHZxCl1G2hjb26RH26HNHtmfehfT0XtX9hNyKQ4o2-LrdNqjmLY6eIO0TTHHPp9Wj5zusz27n0-qz5dvPp2v6vX75dX563VtWoyhbggTDWuI7jSmnBomSmGgrO0MtsDBCC4FA2cd0xxAM2lZJxxm1jmg0DUn1dPZG_PoVTZ-tOamXCpYMyrATSOILNDzGdql-GOyeVSDz6Vir4ONUy4cKUcKTMVf3xG9jVMKpYKSwDGXHA6-FzNkStmcrFO75IfyDMV0kEn17_8V_Nm9U2eje5d0MD4fM6SVgpRHKFwzc3e-t_v_OtX18sMFcE6gpOo55fNofx1TOn1XjDe8VV_fLdVb9lGuv61W6kvzBwUnuII</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917079719</pqid></control><display><type>article</type><title>Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Nguyen, Tran B. ; Lee, Paula B. ; Updyke, Katelyn M. ; Bones, David L. ; Laskin, Julia ; Laskin, Alexander ; Nizkorodov, Sergey A.</creator><creatorcontrib>Nguyen, Tran B. ; Lee, Paula B. ; Updyke, Katelyn M. ; Bones, David L. ; Laskin, Julia ; Laskin, Alexander ; Nizkorodov, Sergey A. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Aqueous extracts of secondary organic aerosols (SOA) generated from the ozonolysis of d‐limonene were subjected to dissolution, evaporation, and re‐dissolution in the presence and absence of ammonium sulfate (AS). Evaporation with AS at pH 4–9 produced chromophores that were stable with respect to hydrolysis and had a distinctive absorption band at 500 nm. Evaporation accelerated the rate of chromophore formation by at least three orders of magnitude compared to the reaction in aqueous solution, which produced similar compounds. Absorption spectroscopy and high‐resolution nanospray desorption electrospray ionization (nano‐DESI) mass spectrometry experiments suggested that the molar fraction of the chromophores was small (&lt;2%), and that they contained nitrogen atoms. Although the colored products represented only a small fraction of SOA, their large extinction coefficients (&gt;105 L mol−1 cm−1 at 500 nm) increased the effective mass absorption coefficient of the residual organics in excess of 103 cm2 g−1 ‐ a dramatic effect on the optical properties from minor constituents. Evaporation of SOA extracts in the absence of AS resulted in the production of colored compounds only when the SOA extract was acidified to pH ∼ 2 with sulfuric acid. These chromophores were produced by acid‐catalyzed aldol condensation, followed by a conversion into organosulfates. The presence of organosulfates was confirmed by high resolution mass spectrometry experiments. Results of this study suggest that evaporation of cloud or fog droplets containing dissolved organics leads to significant modification of the molecular composition and serves as a potentially important source of light‐absorbing compounds. Key Points Evaporation of droplets generates organic compounds absorbing visible radiation Cloud cycling significantly changes the composition of organic aerosols</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2011JD016944</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>ABSORPTION ; ABSORPTION SPECTROSCOPY ; AEROSOLS ; Ammonium ; ammonium sulfate ; AMMONIUM SULFATES ; AQUEOUS SOLUTIONS ; Atmospheric aerosols ; Atmospheric sciences ; ATOMS ; brown carbon ; Chemistry ; CLOUDS ; DESORPTION ; DISSOLUTION ; Earth sciences ; Earth, ocean, space ; EFFECTIVE MASS ; Environmental Molecular Sciences Laboratory ; EVAPORATION ; Exact sciences and technology ; Fog ; Geophysics ; GEOSCIENCES ; HYDROLYSIS ; IONIZATION ; Mass spectrometry ; MASS SPECTROSCOPY ; MODIFICATIONS ; NITROGEN ; OPTICAL PROPERTIES ; organic aerosol ; Physics ; RESOLUTION ; Sulfur ; SULFURIC ACID</subject><ispartof>Journal of Geophysical Research. D. (Atmospheres), 2012-01, Vol.117 (D1), p.n/a</ispartof><rights>Copyright 2012 by the American Geophysical Union</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2012 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5001-32683632ada0474c689441465dc0e171c879861fef6a711a69e6d8f06eff141d3</citedby><cites>FETCH-LOGICAL-c5001-32683632ada0474c689441465dc0e171c879861fef6a711a69e6d8f06eff141d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011JD016944$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011JD016944$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,881,1411,1427,11494,27903,27904,45553,45554,46388,46447,46812,46871</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25982363$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1033829$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Tran B.</creatorcontrib><creatorcontrib>Lee, Paula B.</creatorcontrib><creatorcontrib>Updyke, Katelyn M.</creatorcontrib><creatorcontrib>Bones, David L.</creatorcontrib><creatorcontrib>Laskin, Julia</creatorcontrib><creatorcontrib>Laskin, Alexander</creatorcontrib><creatorcontrib>Nizkorodov, Sergey A.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols</title><title>Journal of Geophysical Research. D. (Atmospheres)</title><addtitle>J. Geophys. Res</addtitle><description>Aqueous extracts of secondary organic aerosols (SOA) generated from the ozonolysis of d‐limonene were subjected to dissolution, evaporation, and re‐dissolution in the presence and absence of ammonium sulfate (AS). Evaporation with AS at pH 4–9 produced chromophores that were stable with respect to hydrolysis and had a distinctive absorption band at 500 nm. Evaporation accelerated the rate of chromophore formation by at least three orders of magnitude compared to the reaction in aqueous solution, which produced similar compounds. Absorption spectroscopy and high‐resolution nanospray desorption electrospray ionization (nano‐DESI) mass spectrometry experiments suggested that the molar fraction of the chromophores was small (&lt;2%), and that they contained nitrogen atoms. Although the colored products represented only a small fraction of SOA, their large extinction coefficients (&gt;105 L mol−1 cm−1 at 500 nm) increased the effective mass absorption coefficient of the residual organics in excess of 103 cm2 g−1 ‐ a dramatic effect on the optical properties from minor constituents. Evaporation of SOA extracts in the absence of AS resulted in the production of colored compounds only when the SOA extract was acidified to pH ∼ 2 with sulfuric acid. These chromophores were produced by acid‐catalyzed aldol condensation, followed by a conversion into organosulfates. The presence of organosulfates was confirmed by high resolution mass spectrometry experiments. Results of this study suggest that evaporation of cloud or fog droplets containing dissolved organics leads to significant modification of the molecular composition and serves as a potentially important source of light‐absorbing compounds. Key Points Evaporation of droplets generates organic compounds absorbing visible radiation Cloud cycling significantly changes the composition of organic aerosols</description><subject>ABSORPTION</subject><subject>ABSORPTION SPECTROSCOPY</subject><subject>AEROSOLS</subject><subject>Ammonium</subject><subject>ammonium sulfate</subject><subject>AMMONIUM SULFATES</subject><subject>AQUEOUS SOLUTIONS</subject><subject>Atmospheric aerosols</subject><subject>Atmospheric sciences</subject><subject>ATOMS</subject><subject>brown carbon</subject><subject>Chemistry</subject><subject>CLOUDS</subject><subject>DESORPTION</subject><subject>DISSOLUTION</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>EFFECTIVE MASS</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>EVAPORATION</subject><subject>Exact sciences and technology</subject><subject>Fog</subject><subject>Geophysics</subject><subject>GEOSCIENCES</subject><subject>HYDROLYSIS</subject><subject>IONIZATION</subject><subject>Mass spectrometry</subject><subject>MASS SPECTROSCOPY</subject><subject>MODIFICATIONS</subject><subject>NITROGEN</subject><subject>OPTICAL PROPERTIES</subject><subject>organic aerosol</subject><subject>Physics</subject><subject>RESOLUTION</subject><subject>Sulfur</subject><subject>SULFURIC ACID</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kd1uFCEYhidGEzdtz7wAYmLigaN8DMPPoWntbutGE38TTwjLwJY6AyvMWPcWvGrZTLN6JCcE8rwPvFBVTwC_BEzkK4IBri8wMEnpg2pBoGU1IZg8rBYYqKgxIfxxdZbzLS6DtoxiWFS_L2Ma9OhjQNGh4McUtzbUSIcO5al3U6pNDKP2wYct6v32Zqz1Jse0OaxNHHZxCl1G2hjb26RH26HNHtmfehfT0XtX9hNyKQ4o2-LrdNqjmLY6eIO0TTHHPp9Wj5zusz27n0-qz5dvPp2v6vX75dX563VtWoyhbggTDWuI7jSmnBomSmGgrO0MtsDBCC4FA2cd0xxAM2lZJxxm1jmg0DUn1dPZG_PoVTZ-tOamXCpYMyrATSOILNDzGdql-GOyeVSDz6Vir4ONUy4cKUcKTMVf3xG9jVMKpYKSwDGXHA6-FzNkStmcrFO75IfyDMV0kEn17_8V_Nm9U2eje5d0MD4fM6SVgpRHKFwzc3e-t_v_OtX18sMFcE6gpOo55fNofx1TOn1XjDe8VV_fLdVb9lGuv61W6kvzBwUnuII</recordid><startdate>20120114</startdate><enddate>20120114</enddate><creator>Nguyen, Tran B.</creator><creator>Lee, Paula B.</creator><creator>Updyke, Katelyn M.</creator><creator>Bones, David L.</creator><creator>Laskin, Julia</creator><creator>Laskin, Alexander</creator><creator>Nizkorodov, Sergey A.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>20120114</creationdate><title>Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols</title><author>Nguyen, Tran B. ; Lee, Paula B. ; Updyke, Katelyn M. ; Bones, David L. ; Laskin, Julia ; Laskin, Alexander ; Nizkorodov, Sergey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5001-32683632ada0474c689441465dc0e171c879861fef6a711a69e6d8f06eff141d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ABSORPTION</topic><topic>ABSORPTION SPECTROSCOPY</topic><topic>AEROSOLS</topic><topic>Ammonium</topic><topic>ammonium sulfate</topic><topic>AMMONIUM SULFATES</topic><topic>AQUEOUS SOLUTIONS</topic><topic>Atmospheric aerosols</topic><topic>Atmospheric sciences</topic><topic>ATOMS</topic><topic>brown carbon</topic><topic>Chemistry</topic><topic>CLOUDS</topic><topic>DESORPTION</topic><topic>DISSOLUTION</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>EFFECTIVE MASS</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>EVAPORATION</topic><topic>Exact sciences and technology</topic><topic>Fog</topic><topic>Geophysics</topic><topic>GEOSCIENCES</topic><topic>HYDROLYSIS</topic><topic>IONIZATION</topic><topic>Mass spectrometry</topic><topic>MASS SPECTROSCOPY</topic><topic>MODIFICATIONS</topic><topic>NITROGEN</topic><topic>OPTICAL PROPERTIES</topic><topic>organic aerosol</topic><topic>Physics</topic><topic>RESOLUTION</topic><topic>Sulfur</topic><topic>SULFURIC ACID</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Tran B.</creatorcontrib><creatorcontrib>Lee, Paula B.</creatorcontrib><creatorcontrib>Updyke, Katelyn M.</creatorcontrib><creatorcontrib>Bones, David L.</creatorcontrib><creatorcontrib>Laskin, Julia</creatorcontrib><creatorcontrib>Laskin, Alexander</creatorcontrib><creatorcontrib>Nizkorodov, Sergey A.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Journal of Geophysical Research. D. (Atmospheres)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Tran B.</au><au>Lee, Paula B.</au><au>Updyke, Katelyn M.</au><au>Bones, David L.</au><au>Laskin, Julia</au><au>Laskin, Alexander</au><au>Nizkorodov, Sergey A.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols</atitle><jtitle>Journal of Geophysical Research. D. (Atmospheres)</jtitle><addtitle>J. Geophys. Res</addtitle><date>2012-01-14</date><risdate>2012</risdate><volume>117</volume><issue>D1</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>Aqueous extracts of secondary organic aerosols (SOA) generated from the ozonolysis of d‐limonene were subjected to dissolution, evaporation, and re‐dissolution in the presence and absence of ammonium sulfate (AS). Evaporation with AS at pH 4–9 produced chromophores that were stable with respect to hydrolysis and had a distinctive absorption band at 500 nm. Evaporation accelerated the rate of chromophore formation by at least three orders of magnitude compared to the reaction in aqueous solution, which produced similar compounds. Absorption spectroscopy and high‐resolution nanospray desorption electrospray ionization (nano‐DESI) mass spectrometry experiments suggested that the molar fraction of the chromophores was small (&lt;2%), and that they contained nitrogen atoms. Although the colored products represented only a small fraction of SOA, their large extinction coefficients (&gt;105 L mol−1 cm−1 at 500 nm) increased the effective mass absorption coefficient of the residual organics in excess of 103 cm2 g−1 ‐ a dramatic effect on the optical properties from minor constituents. Evaporation of SOA extracts in the absence of AS resulted in the production of colored compounds only when the SOA extract was acidified to pH ∼ 2 with sulfuric acid. These chromophores were produced by acid‐catalyzed aldol condensation, followed by a conversion into organosulfates. The presence of organosulfates was confirmed by high resolution mass spectrometry experiments. Results of this study suggest that evaporation of cloud or fog droplets containing dissolved organics leads to significant modification of the molecular composition and serves as a potentially important source of light‐absorbing compounds. Key Points Evaporation of droplets generates organic compounds absorbing visible radiation Cloud cycling significantly changes the composition of organic aerosols</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011JD016944</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. D. (Atmospheres), 2012-01, Vol.117 (D1), p.n/a
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_proquest_miscellaneous_1024658048
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects ABSORPTION
ABSORPTION SPECTROSCOPY
AEROSOLS
Ammonium
ammonium sulfate
AMMONIUM SULFATES
AQUEOUS SOLUTIONS
Atmospheric aerosols
Atmospheric sciences
ATOMS
brown carbon
Chemistry
CLOUDS
DESORPTION
DISSOLUTION
Earth sciences
Earth, ocean, space
EFFECTIVE MASS
Environmental Molecular Sciences Laboratory
EVAPORATION
Exact sciences and technology
Fog
Geophysics
GEOSCIENCES
HYDROLYSIS
IONIZATION
Mass spectrometry
MASS SPECTROSCOPY
MODIFICATIONS
NITROGEN
OPTICAL PROPERTIES
organic aerosol
Physics
RESOLUTION
Sulfur
SULFURIC ACID
title Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20nitrogen-%20and%20sulfur-containing%20light-absorbing%20compounds%20accelerated%20by%20evaporation%20of%20water%20from%20secondary%20organic%20aerosols&rft.jtitle=Journal%20of%20Geophysical%20Research.%20D.%20(Atmospheres)&rft.au=Nguyen,%20Tran%20B.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2012-01-14&rft.volume=117&rft.issue=D1&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2011JD016944&rft_dat=%3Cproquest_osti_%3E1024658048%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917079719&rft_id=info:pmid/&rfr_iscdi=true