WACCM simulations of the mean circulation and trace species transport in the winter mesosphere
Downwelling of air in the high latitude winter middle atmosphere causes perturbations in chemical composition. Species with sources in the mesosphere and lower thermosphere, such as nitric oxide and carbon monoxide, can be locally enhanced in the polar region. We investigate the origin of the downwe...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research 2011-10, Vol.116 (D20), p.1SS-n/a, Article D20115 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | D20 |
container_start_page | 1SS |
container_title | Journal of Geophysical Research |
container_volume | 116 |
creator | Smith, Anne K. Garcia, Rolando R. Marsh, Daniel R. Richter, Jadwiga H. |
description | Downwelling of air in the high latitude winter middle atmosphere causes perturbations in chemical composition. Species with sources in the mesosphere and lower thermosphere, such as nitric oxide and carbon monoxide, can be locally enhanced in the polar region. We investigate the origin of the downwelling air and the timescale for transport using the Whole Atmosphere Community Climate Model (WACCM). Analysis of the middle atmosphere transformed Eulerian mean (TEM) circulation, also called the residual circulation, is presented. This circulation gives the net air motion in the meridional and vertical directions due to the combined effects of the zonally averaged winds and the wave transport. The summer to winter circulation in the upper mesosphere during the solstice seasons includes strong upward motion at the summer pole and downward motion at the winter pole. During most winters, the air that is transported down by the circulation originates from low to middle latitudes in the upper mesosphere, 85–95 km; the timescale for this transport is 2–3 months. Trace species transport by molecular and eddy diffusion can bring high concentrations of thermospheric molecules into the winter mesosphere, where they are then brought to lower altitudes by the circulation. The magnitudes of the net tendencies due to advection by the TEM circulation and diffusion are similar. A case study of an active NH winter shows that the origin of the downwelling air in the TEM circulation is similar to that during average winters although the downwelling velocity is stronger by about a factor of two.
Key Points
Air transported in the polar winter originates in the upper mesosphere
Diffusion is necessary to bring thermospheric species into the downward flow
Transport in WACCM model agrees well with observations |
doi_str_mv | 10.1029/2011JD016083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1024656637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3498295661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4432-2e7bf4065e0e625c91d0241f82063c0ff8177e442a7e505ee945e62f24cfc2db3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EEqvSGz_AggsHAuPxV3KsUthSlRYh0HLCSr1j1SWbBDur0n9fL1shhER9GVnzPJ5XHsaeC3gjAJu3CEKcHoMwUMtHbIFCmwoR8DFbgFB1BYj2KTvM-RrKUdooEAv2fXXUth95jptt381xHDIfA5-viG-oG7iPyd83eDes-Zw6TzxP5CPl3W3I05hmHoffzk0cZkpFzWOerijRM_YkdH2mw_t6wL6-f_elPanOLpYf2qOzyislsUKyl0GB0QRkUPtGrAGVCDWCkR5CqIW1pBR2ljRookbpAgZUPnhcX8oD9mr_7pTGn1vKs9vE7Knvu4HGbXblh5TRxkhb0Bf_oNfjNg0lnWsAhZUgmwK9_B8kSkBZW1HvqNd7yqcx50TBTSluunRb5u1GNu7vpRRc7vGb2NPtg6w7XX4-LlkEFqvaWzHP9OuP1aUfzlhptVudL90ngHb1TYM7kXdLC5o2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625387189</pqid></control><display><type>article</type><title>WACCM simulations of the mean circulation and trace species transport in the winter mesosphere</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Smith, Anne K. ; Garcia, Rolando R. ; Marsh, Daniel R. ; Richter, Jadwiga H.</creator><creatorcontrib>Smith, Anne K. ; Garcia, Rolando R. ; Marsh, Daniel R. ; Richter, Jadwiga H.</creatorcontrib><description>Downwelling of air in the high latitude winter middle atmosphere causes perturbations in chemical composition. Species with sources in the mesosphere and lower thermosphere, such as nitric oxide and carbon monoxide, can be locally enhanced in the polar region. We investigate the origin of the downwelling air and the timescale for transport using the Whole Atmosphere Community Climate Model (WACCM). Analysis of the middle atmosphere transformed Eulerian mean (TEM) circulation, also called the residual circulation, is presented. This circulation gives the net air motion in the meridional and vertical directions due to the combined effects of the zonally averaged winds and the wave transport. The summer to winter circulation in the upper mesosphere during the solstice seasons includes strong upward motion at the summer pole and downward motion at the winter pole. During most winters, the air that is transported down by the circulation originates from low to middle latitudes in the upper mesosphere, 85–95 km; the timescale for this transport is 2–3 months. Trace species transport by molecular and eddy diffusion can bring high concentrations of thermospheric molecules into the winter mesosphere, where they are then brought to lower altitudes by the circulation. The magnitudes of the net tendencies due to advection by the TEM circulation and diffusion are similar. A case study of an active NH winter shows that the origin of the downwelling air in the TEM circulation is similar to that during average winters although the downwelling velocity is stronger by about a factor of two.
Key Points
Air transported in the polar winter originates in the upper mesosphere
Diffusion is necessary to bring thermospheric species into the downward flow
Transport in WACCM model agrees well with observations</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2011JD016083</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atmosphere ; Atmospheric sciences ; Carbon monoxide ; circulation ; Climate models ; Eddy diffusion ; Geophysics ; Latitude ; Mesoclimatology ; mesosphere ; Nitric oxide ; NO transport ; Polar environments ; Summer ; Winter</subject><ispartof>Journal of Geophysical Research, 2011-10, Vol.116 (D20), p.1SS-n/a, Article D20115</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>Copyright Blackwell Publishing Ltd. 2011</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4432-2e7bf4065e0e625c91d0241f82063c0ff8177e442a7e505ee945e62f24cfc2db3</citedby><cites>FETCH-LOGICAL-c4432-2e7bf4065e0e625c91d0241f82063c0ff8177e442a7e505ee945e62f24cfc2db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011JD016083$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011JD016083$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Smith, Anne K.</creatorcontrib><creatorcontrib>Garcia, Rolando R.</creatorcontrib><creatorcontrib>Marsh, Daniel R.</creatorcontrib><creatorcontrib>Richter, Jadwiga H.</creatorcontrib><title>WACCM simulations of the mean circulation and trace species transport in the winter mesosphere</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>Downwelling of air in the high latitude winter middle atmosphere causes perturbations in chemical composition. Species with sources in the mesosphere and lower thermosphere, such as nitric oxide and carbon monoxide, can be locally enhanced in the polar region. We investigate the origin of the downwelling air and the timescale for transport using the Whole Atmosphere Community Climate Model (WACCM). Analysis of the middle atmosphere transformed Eulerian mean (TEM) circulation, also called the residual circulation, is presented. This circulation gives the net air motion in the meridional and vertical directions due to the combined effects of the zonally averaged winds and the wave transport. The summer to winter circulation in the upper mesosphere during the solstice seasons includes strong upward motion at the summer pole and downward motion at the winter pole. During most winters, the air that is transported down by the circulation originates from low to middle latitudes in the upper mesosphere, 85–95 km; the timescale for this transport is 2–3 months. Trace species transport by molecular and eddy diffusion can bring high concentrations of thermospheric molecules into the winter mesosphere, where they are then brought to lower altitudes by the circulation. The magnitudes of the net tendencies due to advection by the TEM circulation and diffusion are similar. A case study of an active NH winter shows that the origin of the downwelling air in the TEM circulation is similar to that during average winters although the downwelling velocity is stronger by about a factor of two.
Key Points
Air transported in the polar winter originates in the upper mesosphere
Diffusion is necessary to bring thermospheric species into the downward flow
Transport in WACCM model agrees well with observations</description><subject>Atmosphere</subject><subject>Atmospheric sciences</subject><subject>Carbon monoxide</subject><subject>circulation</subject><subject>Climate models</subject><subject>Eddy diffusion</subject><subject>Geophysics</subject><subject>Latitude</subject><subject>Mesoclimatology</subject><subject>mesosphere</subject><subject>Nitric oxide</subject><subject>NO transport</subject><subject>Polar environments</subject><subject>Summer</subject><subject>Winter</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1v1DAQhi0EEqvSGz_AggsHAuPxV3KsUthSlRYh0HLCSr1j1SWbBDur0n9fL1shhER9GVnzPJ5XHsaeC3gjAJu3CEKcHoMwUMtHbIFCmwoR8DFbgFB1BYj2KTvM-RrKUdooEAv2fXXUth95jptt381xHDIfA5-viG-oG7iPyd83eDes-Zw6TzxP5CPl3W3I05hmHoffzk0cZkpFzWOerijRM_YkdH2mw_t6wL6-f_elPanOLpYf2qOzyislsUKyl0GB0QRkUPtGrAGVCDWCkR5CqIW1pBR2ljRookbpAgZUPnhcX8oD9mr_7pTGn1vKs9vE7Knvu4HGbXblh5TRxkhb0Bf_oNfjNg0lnWsAhZUgmwK9_B8kSkBZW1HvqNd7yqcx50TBTSluunRb5u1GNu7vpRRc7vGb2NPtg6w7XX4-LlkEFqvaWzHP9OuP1aUfzlhptVudL90ngHb1TYM7kXdLC5o2</recordid><startdate>20111027</startdate><enddate>20111027</enddate><creator>Smith, Anne K.</creator><creator>Garcia, Rolando R.</creator><creator>Marsh, Daniel R.</creator><creator>Richter, Jadwiga H.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7TV</scope></search><sort><creationdate>20111027</creationdate><title>WACCM simulations of the mean circulation and trace species transport in the winter mesosphere</title><author>Smith, Anne K. ; Garcia, Rolando R. ; Marsh, Daniel R. ; Richter, Jadwiga H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4432-2e7bf4065e0e625c91d0241f82063c0ff8177e442a7e505ee945e62f24cfc2db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atmosphere</topic><topic>Atmospheric sciences</topic><topic>Carbon monoxide</topic><topic>circulation</topic><topic>Climate models</topic><topic>Eddy diffusion</topic><topic>Geophysics</topic><topic>Latitude</topic><topic>Mesoclimatology</topic><topic>mesosphere</topic><topic>Nitric oxide</topic><topic>NO transport</topic><topic>Polar environments</topic><topic>Summer</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Anne K.</creatorcontrib><creatorcontrib>Garcia, Rolando R.</creatorcontrib><creatorcontrib>Marsh, Daniel R.</creatorcontrib><creatorcontrib>Richter, Jadwiga H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Pollution Abstracts</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Anne K.</au><au>Garcia, Rolando R.</au><au>Marsh, Daniel R.</au><au>Richter, Jadwiga H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WACCM simulations of the mean circulation and trace species transport in the winter mesosphere</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-10-27</date><risdate>2011</risdate><volume>116</volume><issue>D20</issue><spage>1SS</spage><epage>n/a</epage><pages>1SS-n/a</pages><artnum>D20115</artnum><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>Downwelling of air in the high latitude winter middle atmosphere causes perturbations in chemical composition. Species with sources in the mesosphere and lower thermosphere, such as nitric oxide and carbon monoxide, can be locally enhanced in the polar region. We investigate the origin of the downwelling air and the timescale for transport using the Whole Atmosphere Community Climate Model (WACCM). Analysis of the middle atmosphere transformed Eulerian mean (TEM) circulation, also called the residual circulation, is presented. This circulation gives the net air motion in the meridional and vertical directions due to the combined effects of the zonally averaged winds and the wave transport. The summer to winter circulation in the upper mesosphere during the solstice seasons includes strong upward motion at the summer pole and downward motion at the winter pole. During most winters, the air that is transported down by the circulation originates from low to middle latitudes in the upper mesosphere, 85–95 km; the timescale for this transport is 2–3 months. Trace species transport by molecular and eddy diffusion can bring high concentrations of thermospheric molecules into the winter mesosphere, where they are then brought to lower altitudes by the circulation. The magnitudes of the net tendencies due to advection by the TEM circulation and diffusion are similar. A case study of an active NH winter shows that the origin of the downwelling air in the TEM circulation is similar to that during average winters although the downwelling velocity is stronger by about a factor of two.
Key Points
Air transported in the polar winter originates in the upper mesosphere
Diffusion is necessary to bring thermospheric species into the downward flow
Transport in WACCM model agrees well with observations</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011JD016083</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research, 2011-10, Vol.116 (D20), p.1SS-n/a, Article D20115 |
issn | 0148-0227 2169-897X 2156-2202 2169-8996 |
language | eng |
recordid | cdi_proquest_miscellaneous_1024656637 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Atmosphere Atmospheric sciences Carbon monoxide circulation Climate models Eddy diffusion Geophysics Latitude Mesoclimatology mesosphere Nitric oxide NO transport Polar environments Summer Winter |
title | WACCM simulations of the mean circulation and trace species transport in the winter mesosphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WACCM%20simulations%20of%20the%20mean%20circulation%20and%20trace%20species%20transport%20in%20the%20winter%20mesosphere&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Smith,%20Anne%20K.&rft.date=2011-10-27&rft.volume=116&rft.issue=D20&rft.spage=1SS&rft.epage=n/a&rft.pages=1SS-n/a&rft.artnum=D20115&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2011JD016083&rft_dat=%3Cproquest_cross%3E3498295661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625387189&rft_id=info:pmid/&rfr_iscdi=true |