Effects of the 11 year solar cycle on middle atmospheric stationary wave patterns in temperature, ozone, and water vapor

The influence of the 11 year cycle in solar irradiation on middle atmospheric stationary wave patterns in temperature, ozone, and water vapor, as indicated by the deviations from zonal mean T*, O3*, and H2O*, is investigated on the basis of time‐slice simulations with the general circulation and che...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Atmospheres 2011-12, Vol.116 (D23), p.n/a
Hauptverfasser: Gabriel, A., Schmidt, H., Peters, D. H. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D23
container_start_page
container_title Journal of Geophysical Research: Atmospheres
container_volume 116
creator Gabriel, A.
Schmidt, H.
Peters, D. H. W.
description The influence of the 11 year cycle in solar irradiation on middle atmospheric stationary wave patterns in temperature, ozone, and water vapor, as indicated by the deviations from zonal mean T*, O3*, and H2O*, is investigated on the basis of time‐slice simulations with the general circulation and chemistry model HAMMONIA for solar maximum and minimum conditions. For northern winter, the long‐term means of the three parameters are characterized by a pronounced wave‐one pattern in the middle atmosphere, but for each of the parameters with a different shift in phase with increasing height. We find a significant increase in amplitude and a horizontal shift in phase of these wave‐one patterns when changing from solar minimum to maximum, i.e., regional changes of about ±2–3 K in T*, ±4%–5% in O3*, and ±2%–3% in H2O*. We demonstrate that the solar variability induces these changes by modulating the effect of zonally asymmetric radiative heating due to the stationary wave‐one patterns in ozone and other absorbers and to subsequent modulations in planetary wave propagation and wave‐driven transport. A comparison with ensemble means for solar maximum and minimum derived from European Centre of Medium‐Range Weather Forecasts (ECMWF) Reanalysis data (ERA‐40) shows reasonable agreement but also some differences in the significance and location of the solar signals, which is discussed in relation to the different setups of the two data sets. Overall, the results indicate a remarkable effect of the solar cycle on local changes in temperature, wave dynamics, and transport at northern midlatitudes and polar latitudes. Key Points Effects of the 11 year solar cycle on stationary waves are examined Model results and observations indicate significant changes Stationary waves in temperature, ozone, and water vapor are affected
doi_str_mv 10.1029/2011JD015825
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1024654096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024654096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4046-8f9e52b0cd593fab7273cc033bfbaf4d126734d1a8ab27a0093a974b6023b79b3</originalsourceid><addsrcrecordid>eNpdkc9u1DAQxi0EEqttbzyAhYTEgcD4T-zNEW3b3Za2SBWIozVxHDUliYPtbQlPw7P0yTBsVaH64G8k_2bmmzEhrxi8Z8CrDxwYOzsCVq54-YwsOCtVwTnw52QBTK4K4Fy_JIcx3kA-slQS2ILMx23rbIrUtzRdO8rY_e_ZYaDR9_m2s-0d9SMduqbJEabBx-nahc7SmDB1fsQw0zu8dXTClFwYI-1GmtwwuYBpF9w76n_5MQuOTQYzQm9x8uGAvGixj-7wQZfk68nxl_W2OP-8OV1_PC-sBKmKVVu5ktdgm7ISLdaaa2EtCFG3NbayYVxpkQVXWHONAJXASstaARe1rmqxJG_3dafgf-xcTGboonV9j6Pzu2jy8qQqJVQqo6-foDd-F8bszlSMKRAKIENvHiCMFvs24Gi7aKbQDXkVhudSSmWTSyL23F3Xu_nxncHfjpX5_7vM2ebqiGn2z0Kxz-picj8fszB8N3lOXZpvlxuz3nKptxefzJX4A_k4mHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911603600</pqid></control><display><type>article</type><title>Effects of the 11 year solar cycle on middle atmospheric stationary wave patterns in temperature, ozone, and water vapor</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Gabriel, A. ; Schmidt, H. ; Peters, D. H. W.</creator><creatorcontrib>Gabriel, A. ; Schmidt, H. ; Peters, D. H. W.</creatorcontrib><description>The influence of the 11 year cycle in solar irradiation on middle atmospheric stationary wave patterns in temperature, ozone, and water vapor, as indicated by the deviations from zonal mean T*, O3*, and H2O*, is investigated on the basis of time‐slice simulations with the general circulation and chemistry model HAMMONIA for solar maximum and minimum conditions. For northern winter, the long‐term means of the three parameters are characterized by a pronounced wave‐one pattern in the middle atmosphere, but for each of the parameters with a different shift in phase with increasing height. We find a significant increase in amplitude and a horizontal shift in phase of these wave‐one patterns when changing from solar minimum to maximum, i.e., regional changes of about ±2–3 K in T*, ±4%–5% in O3*, and ±2%–3% in H2O*. We demonstrate that the solar variability induces these changes by modulating the effect of zonally asymmetric radiative heating due to the stationary wave‐one patterns in ozone and other absorbers and to subsequent modulations in planetary wave propagation and wave‐driven transport. A comparison with ensemble means for solar maximum and minimum derived from European Centre of Medium‐Range Weather Forecasts (ECMWF) Reanalysis data (ERA‐40) shows reasonable agreement but also some differences in the significance and location of the solar signals, which is discussed in relation to the different setups of the two data sets. Overall, the results indicate a remarkable effect of the solar cycle on local changes in temperature, wave dynamics, and transport at northern midlatitudes and polar latitudes. Key Points Effects of the 11 year solar cycle on stationary waves are examined Model results and observations indicate significant changes Stationary waves in temperature, ozone, and water vapor are affected</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2011JD015825</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Atmospheric chemistry ; Atmospheric sciences ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geophysics ; Irradiation ; Ozone ; solar cycle ; stationary waves ; stratospheric and mesospheric water vapor ; stratospheric ozone ; Water vapor ; Wave propagation ; Weather forecasting</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2011-12, Vol.116 (D23), p.n/a</ispartof><rights>Copyright 2011 by the American Geophysical Union</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4046-8f9e52b0cd593fab7273cc033bfbaf4d126734d1a8ab27a0093a974b6023b79b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011JD015825$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011JD015825$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,11512,27922,27923,45572,45573,46407,46466,46831,46890</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25406627$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gabriel, A.</creatorcontrib><creatorcontrib>Schmidt, H.</creatorcontrib><creatorcontrib>Peters, D. H. W.</creatorcontrib><title>Effects of the 11 year solar cycle on middle atmospheric stationary wave patterns in temperature, ozone, and water vapor</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>The influence of the 11 year cycle in solar irradiation on middle atmospheric stationary wave patterns in temperature, ozone, and water vapor, as indicated by the deviations from zonal mean T*, O3*, and H2O*, is investigated on the basis of time‐slice simulations with the general circulation and chemistry model HAMMONIA for solar maximum and minimum conditions. For northern winter, the long‐term means of the three parameters are characterized by a pronounced wave‐one pattern in the middle atmosphere, but for each of the parameters with a different shift in phase with increasing height. We find a significant increase in amplitude and a horizontal shift in phase of these wave‐one patterns when changing from solar minimum to maximum, i.e., regional changes of about ±2–3 K in T*, ±4%–5% in O3*, and ±2%–3% in H2O*. We demonstrate that the solar variability induces these changes by modulating the effect of zonally asymmetric radiative heating due to the stationary wave‐one patterns in ozone and other absorbers and to subsequent modulations in planetary wave propagation and wave‐driven transport. A comparison with ensemble means for solar maximum and minimum derived from European Centre of Medium‐Range Weather Forecasts (ECMWF) Reanalysis data (ERA‐40) shows reasonable agreement but also some differences in the significance and location of the solar signals, which is discussed in relation to the different setups of the two data sets. Overall, the results indicate a remarkable effect of the solar cycle on local changes in temperature, wave dynamics, and transport at northern midlatitudes and polar latitudes. Key Points Effects of the 11 year solar cycle on stationary waves are examined Model results and observations indicate significant changes Stationary waves in temperature, ozone, and water vapor are affected</description><subject>Atmospheric chemistry</subject><subject>Atmospheric sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>Irradiation</subject><subject>Ozone</subject><subject>solar cycle</subject><subject>stationary waves</subject><subject>stratospheric and mesospheric water vapor</subject><subject>stratospheric ozone</subject><subject>Water vapor</subject><subject>Wave propagation</subject><subject>Weather forecasting</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc9u1DAQxi0EEqttbzyAhYTEgcD4T-zNEW3b3Za2SBWIozVxHDUliYPtbQlPw7P0yTBsVaH64G8k_2bmmzEhrxi8Z8CrDxwYOzsCVq54-YwsOCtVwTnw52QBTK4K4Fy_JIcx3kA-slQS2ILMx23rbIrUtzRdO8rY_e_ZYaDR9_m2s-0d9SMduqbJEabBx-nahc7SmDB1fsQw0zu8dXTClFwYI-1GmtwwuYBpF9w76n_5MQuOTQYzQm9x8uGAvGixj-7wQZfk68nxl_W2OP-8OV1_PC-sBKmKVVu5ktdgm7ISLdaaa2EtCFG3NbayYVxpkQVXWHONAJXASstaARe1rmqxJG_3dafgf-xcTGboonV9j6Pzu2jy8qQqJVQqo6-foDd-F8bszlSMKRAKIENvHiCMFvs24Gi7aKbQDXkVhudSSmWTSyL23F3Xu_nxncHfjpX5_7vM2ebqiGn2z0Kxz-picj8fszB8N3lOXZpvlxuz3nKptxefzJX4A_k4mHc</recordid><startdate>20111207</startdate><enddate>20111207</enddate><creator>Gabriel, A.</creator><creator>Schmidt, H.</creator><creator>Peters, D. H. W.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20111207</creationdate><title>Effects of the 11 year solar cycle on middle atmospheric stationary wave patterns in temperature, ozone, and water vapor</title><author>Gabriel, A. ; Schmidt, H. ; Peters, D. H. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4046-8f9e52b0cd593fab7273cc033bfbaf4d126734d1a8ab27a0093a974b6023b79b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atmospheric chemistry</topic><topic>Atmospheric sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>Irradiation</topic><topic>Ozone</topic><topic>solar cycle</topic><topic>stationary waves</topic><topic>stratospheric and mesospheric water vapor</topic><topic>stratospheric ozone</topic><topic>Water vapor</topic><topic>Wave propagation</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gabriel, A.</creatorcontrib><creatorcontrib>Schmidt, H.</creatorcontrib><creatorcontrib>Peters, D. H. W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabriel, A.</au><au>Schmidt, H.</au><au>Peters, D. H. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of the 11 year solar cycle on middle atmospheric stationary wave patterns in temperature, ozone, and water vapor</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-12-07</date><risdate>2011</risdate><volume>116</volume><issue>D23</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>The influence of the 11 year cycle in solar irradiation on middle atmospheric stationary wave patterns in temperature, ozone, and water vapor, as indicated by the deviations from zonal mean T*, O3*, and H2O*, is investigated on the basis of time‐slice simulations with the general circulation and chemistry model HAMMONIA for solar maximum and minimum conditions. For northern winter, the long‐term means of the three parameters are characterized by a pronounced wave‐one pattern in the middle atmosphere, but for each of the parameters with a different shift in phase with increasing height. We find a significant increase in amplitude and a horizontal shift in phase of these wave‐one patterns when changing from solar minimum to maximum, i.e., regional changes of about ±2–3 K in T*, ±4%–5% in O3*, and ±2%–3% in H2O*. We demonstrate that the solar variability induces these changes by modulating the effect of zonally asymmetric radiative heating due to the stationary wave‐one patterns in ozone and other absorbers and to subsequent modulations in planetary wave propagation and wave‐driven transport. A comparison with ensemble means for solar maximum and minimum derived from European Centre of Medium‐Range Weather Forecasts (ECMWF) Reanalysis data (ERA‐40) shows reasonable agreement but also some differences in the significance and location of the solar signals, which is discussed in relation to the different setups of the two data sets. Overall, the results indicate a remarkable effect of the solar cycle on local changes in temperature, wave dynamics, and transport at northern midlatitudes and polar latitudes. Key Points Effects of the 11 year solar cycle on stationary waves are examined Model results and observations indicate significant changes Stationary waves in temperature, ozone, and water vapor are affected</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011JD015825</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Atmospheres, 2011-12, Vol.116 (D23), p.n/a
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_proquest_miscellaneous_1024654096
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects Atmospheric chemistry
Atmospheric sciences
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geophysics
Irradiation
Ozone
solar cycle
stationary waves
stratospheric and mesospheric water vapor
stratospheric ozone
Water vapor
Wave propagation
Weather forecasting
title Effects of the 11 year solar cycle on middle atmospheric stationary wave patterns in temperature, ozone, and water vapor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20the%2011%C2%A0year%20solar%20cycle%20on%20middle%20atmospheric%20stationary%20wave%20patterns%20in%20temperature,%20ozone,%20and%20water%20vapor&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Gabriel,%20A.&rft.date=2011-12-07&rft.volume=116&rft.issue=D23&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2011JD015825&rft_dat=%3Cproquest_pasca%3E1024654096%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911603600&rft_id=info:pmid/&rfr_iscdi=true