Using the NARMAX OLS-ERR algorithm to obtain the most influential coupling functions that affect the evolution of the magnetosphere
The NARMAX OLS‐ERR algorithm, which is widely used in the study of systems dynamics, is able to determine the causal relationship between the input and output variables for nonlinear systems. This technique has been applied to measurements of the solar wind from ACE at L1 and the Dst index in order...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Space Physics 2011-05, Vol.116 (A5), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | A5 |
container_start_page | |
container_title | Journal of Geophysical Research: Space Physics |
container_volume | 116 |
creator | Boynton, R. J. Balikhin, M. A. Billings, S. A. Wei, H. L. Ganushkina, N. |
description | The NARMAX OLS‐ERR algorithm, which is widely used in the study of systems dynamics, is able to determine the causal relationship between the input and output variables for nonlinear systems. This technique has been applied to measurements of the solar wind from ACE at L1 and the Dst index in order to find the best solar wind–magnetosphere coupling function, i.e., which combination of solar wind parameters provides the best predictive capabilities of the Dst index. The data‐deduced coupling functions were then compared to those suggested in previous analytical and data‐based studies. The most appropriate coupling function was found to be n1/2VαBT sin6(θ/2), where the power of velocity, α, was inconclusive but should be in the range 2–3.
Key Points
To identify a solar wind‐magnetosphere coupling function from data |
doi_str_mv | 10.1029/2010JA015505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1024654089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321101683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4491-d85b236020f4f50b7364c1c85fe69834958c078007e9d664eb2a9b4aed1875ba3</originalsourceid><addsrcrecordid>eNp1kU9vEzEQxS1EJaLSGx_AgguXhfHf9R5XUUmpQlotVHCzvBs7cdmsw9oL9MwXx2kQqip1LnOY33tvNIPQKwLvCNDqPQUClzUQIUA8QzNKhCwoBfoczYBwVQCl5Qt0FuMt5OJCciAz9Ocm-mGD09biVd18qr_hq-Xn4rxpsOk3YfRpu8Mp4NAm44d7bBdiwn5w_WSH5E2PuzDt-4OJm4Yu-TDEzJmEjXO2S_ca-zP002GEgzuamM1gU4j7rR3tS3TiTB_t2b9-im4-nH-ZXxTLq8XHeb0sOs4rUqyVaCmTQMFxJ6AtmeQd6ZRwVlaK8UqoDkoFUNpqLSW3LTVVy41dE1WK1rBT9Pboux_Dj8nGpHc-drbvzWDDFHU-I5eCg6oy-voRehumccjbaVUyzlkpIUNvnoKIUkAJqwTLFDtSv3xv7_R-9Dsz3uWwQ16lH75NXy6amoKUJKuKo8rHZH__V5nxu5YlK4X-ulro63lzfSFWoAX7C9remXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880213953</pqid></control><display><type>article</type><title>Using the NARMAX OLS-ERR algorithm to obtain the most influential coupling functions that affect the evolution of the magnetosphere</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Boynton, R. J. ; Balikhin, M. A. ; Billings, S. A. ; Wei, H. L. ; Ganushkina, N.</creator><creatorcontrib>Boynton, R. J. ; Balikhin, M. A. ; Billings, S. A. ; Wei, H. L. ; Ganushkina, N.</creatorcontrib><description>The NARMAX OLS‐ERR algorithm, which is widely used in the study of systems dynamics, is able to determine the causal relationship between the input and output variables for nonlinear systems. This technique has been applied to measurements of the solar wind from ACE at L1 and the Dst index in order to find the best solar wind–magnetosphere coupling function, i.e., which combination of solar wind parameters provides the best predictive capabilities of the Dst index. The data‐deduced coupling functions were then compared to those suggested in previous analytical and data‐based studies. The most appropriate coupling function was found to be n1/2VαBT sin6(θ/2), where the power of velocity, α, was inconclusive but should be in the range 2–3.
Key Points
To identify a solar wind‐magnetosphere coupling function from data</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2010JA015505</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Atmospheric sciences ; Charged particles ; Magnetism ; Plasma physics ; Saturn ; solar wind-magnetosphere coupling ; Space ; Weather</subject><ispartof>Journal of Geophysical Research: Space Physics, 2011-05, Vol.116 (A5), p.n/a</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4491-d85b236020f4f50b7364c1c85fe69834958c078007e9d664eb2a9b4aed1875ba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010JA015505$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010JA015505$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Boynton, R. J.</creatorcontrib><creatorcontrib>Balikhin, M. A.</creatorcontrib><creatorcontrib>Billings, S. A.</creatorcontrib><creatorcontrib>Wei, H. L.</creatorcontrib><creatorcontrib>Ganushkina, N.</creatorcontrib><title>Using the NARMAX OLS-ERR algorithm to obtain the most influential coupling functions that affect the evolution of the magnetosphere</title><title>Journal of Geophysical Research: Space Physics</title><addtitle>J. Geophys. Res</addtitle><description>The NARMAX OLS‐ERR algorithm, which is widely used in the study of systems dynamics, is able to determine the causal relationship between the input and output variables for nonlinear systems. This technique has been applied to measurements of the solar wind from ACE at L1 and the Dst index in order to find the best solar wind–magnetosphere coupling function, i.e., which combination of solar wind parameters provides the best predictive capabilities of the Dst index. The data‐deduced coupling functions were then compared to those suggested in previous analytical and data‐based studies. The most appropriate coupling function was found to be n1/2VαBT sin6(θ/2), where the power of velocity, α, was inconclusive but should be in the range 2–3.
Key Points
To identify a solar wind‐magnetosphere coupling function from data</description><subject>Algorithms</subject><subject>Atmospheric sciences</subject><subject>Charged particles</subject><subject>Magnetism</subject><subject>Plasma physics</subject><subject>Saturn</subject><subject>solar wind-magnetosphere coupling</subject><subject>Space</subject><subject>Weather</subject><issn>0148-0227</issn><issn>2169-9380</issn><issn>2156-2202</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU9vEzEQxS1EJaLSGx_AgguXhfHf9R5XUUmpQlotVHCzvBs7cdmsw9oL9MwXx2kQqip1LnOY33tvNIPQKwLvCNDqPQUClzUQIUA8QzNKhCwoBfoczYBwVQCl5Qt0FuMt5OJCciAz9Ocm-mGD09biVd18qr_hq-Xn4rxpsOk3YfRpu8Mp4NAm44d7bBdiwn5w_WSH5E2PuzDt-4OJm4Yu-TDEzJmEjXO2S_ca-zP002GEgzuamM1gU4j7rR3tS3TiTB_t2b9-im4-nH-ZXxTLq8XHeb0sOs4rUqyVaCmTQMFxJ6AtmeQd6ZRwVlaK8UqoDkoFUNpqLSW3LTVVy41dE1WK1rBT9Pboux_Dj8nGpHc-drbvzWDDFHU-I5eCg6oy-voRehumccjbaVUyzlkpIUNvnoKIUkAJqwTLFDtSv3xv7_R-9Dsz3uWwQ16lH75NXy6amoKUJKuKo8rHZH__V5nxu5YlK4X-ulro63lzfSFWoAX7C9remXo</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Boynton, R. J.</creator><creator>Balikhin, M. A.</creator><creator>Billings, S. A.</creator><creator>Wei, H. L.</creator><creator>Ganushkina, N.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201105</creationdate><title>Using the NARMAX OLS-ERR algorithm to obtain the most influential coupling functions that affect the evolution of the magnetosphere</title><author>Boynton, R. J. ; Balikhin, M. A. ; Billings, S. A. ; Wei, H. L. ; Ganushkina, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4491-d85b236020f4f50b7364c1c85fe69834958c078007e9d664eb2a9b4aed1875ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Atmospheric sciences</topic><topic>Charged particles</topic><topic>Magnetism</topic><topic>Plasma physics</topic><topic>Saturn</topic><topic>solar wind-magnetosphere coupling</topic><topic>Space</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boynton, R. J.</creatorcontrib><creatorcontrib>Balikhin, M. A.</creatorcontrib><creatorcontrib>Billings, S. A.</creatorcontrib><creatorcontrib>Wei, H. L.</creatorcontrib><creatorcontrib>Ganushkina, N.</creatorcontrib><collection>Istex</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research: Space Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boynton, R. J.</au><au>Balikhin, M. A.</au><au>Billings, S. A.</au><au>Wei, H. L.</au><au>Ganushkina, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the NARMAX OLS-ERR algorithm to obtain the most influential coupling functions that affect the evolution of the magnetosphere</atitle><jtitle>Journal of Geophysical Research: Space Physics</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-05</date><risdate>2011</risdate><volume>116</volume><issue>A5</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9380</issn><eissn>2156-2202</eissn><eissn>2169-9402</eissn><abstract>The NARMAX OLS‐ERR algorithm, which is widely used in the study of systems dynamics, is able to determine the causal relationship between the input and output variables for nonlinear systems. This technique has been applied to measurements of the solar wind from ACE at L1 and the Dst index in order to find the best solar wind–magnetosphere coupling function, i.e., which combination of solar wind parameters provides the best predictive capabilities of the Dst index. The data‐deduced coupling functions were then compared to those suggested in previous analytical and data‐based studies. The most appropriate coupling function was found to be n1/2VαBT sin6(θ/2), where the power of velocity, α, was inconclusive but should be in the range 2–3.
Key Points
To identify a solar wind‐magnetosphere coupling function from data</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010JA015505</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Space Physics, 2011-05, Vol.116 (A5), p.n/a |
issn | 0148-0227 2169-9380 2156-2202 2169-9402 |
language | eng |
recordid | cdi_proquest_miscellaneous_1024654089 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Algorithms Atmospheric sciences Charged particles Magnetism Plasma physics Saturn solar wind-magnetosphere coupling Space Weather |
title | Using the NARMAX OLS-ERR algorithm to obtain the most influential coupling functions that affect the evolution of the magnetosphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20NARMAX%20OLS-ERR%20algorithm%20to%20obtain%20the%20most%20influential%20coupling%20functions%20that%20affect%20the%20evolution%20of%20the%20magnetosphere&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Space%20Physics&rft.au=Boynton,%20R.%20J.&rft.date=2011-05&rft.volume=116&rft.issue=A5&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2010JA015505&rft_dat=%3Cproquest_wiley%3E4321101683%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880213953&rft_id=info:pmid/&rfr_iscdi=true |