H2O2-Mediated Oxidation of Zero-Valent Silver and Resultant Interactions among Silver Nanoparticles, Silver Ions, and Reactive Oxygen Species

The H2O2-mediated oxidation of silver nanoparticles (AgNPs) over a range of pH (3.0–14.0) is investigated here, and an electron charging–discharging model capable of describing the experimental results obtained is developed. AgNPs initially react with H2O2 to form Ag+ and superoxide, with these prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2012-07, Vol.28 (27), p.10266-10275
Hauptverfasser: He, Di, Garg, Shikha, Waite, T. David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10275
container_issue 27
container_start_page 10266
container_title Langmuir
container_volume 28
creator He, Di
Garg, Shikha
Waite, T. David
description The H2O2-mediated oxidation of silver nanoparticles (AgNPs) over a range of pH (3.0–14.0) is investigated here, and an electron charging–discharging model capable of describing the experimental results obtained is developed. AgNPs initially react with H2O2 to form Ag+ and superoxide, with these products subsequently reacting to reform AgNPs (in-situ-formed AgNPs) via an electron charging–discharging mechanism. Our experimental results show that the AgNP reactivity toward H2O2 varies significantly with pH, with the variation at high pH (>10) due particularly to the differences in the reactivity of H2O2 and its conjugate base HO2 – with AgNPs whereas at lower pH (3–10) the pH dependence of H2O2 decay is accounted for, at least in part, by the pH dependence of the rate of superoxide disproportionation. Our results further demonstrate that the in-situ-formed AgNPs resulting from the superoxide-mediated reduction of Ag+ have a different size and reactivity compared to those of the citrate-stabilized particles initially present. The turnover frequency for AgNPs varies significantly with pH and is as high as 1776.0 min–1 at pH 11.0, reducing to 144.2 min–1 at pH 10.0 and 3.2 min–1 at pH 3.0.
doi_str_mv 10.1021/la300929g
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1024477874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024477874</sourcerecordid><originalsourceid>FETCH-LOGICAL-a267t-b5f37df352938c20c47f16cf34363a05a3a175e9a3658da6cf9fdc4887ee12463</originalsourceid><addsrcrecordid>eNpFkc1O6zAQhS0Egt7CghdA2SCxIOC_2MkSVXCpBFTib8EmGpxJZeQ6xU4QPATvfF3dFlYjzXxzjuYMIYeMnjHK2bkDQWnFq_kWGbGC07woud4mI6qlyLVUYo_8ifGNJkjIapfsca6YKqkake9rPuP5LTYWemyy2adtoLedz7o2e8HQ5c_g0PfZg3UfGDLwTXaPcXA9pObU9xjArPiYwaLz8w13B75bQuitcRhPN91p4k7XGqu1D0yGX3P02cMSjcW4T3ZacBEP1nVMnq4uHyfX-c3s73RycZMDV7rPX4tW6KYVBa9EaTg1UrdMmVZIoQTQAgQwXWAFQhVlA2lStY2RZakRGU95jMnJf91l6N4HjH29sNGgc-CxG2KdUpVS6zLlNyZHa3R4XWBTL4NdQPiqNxEm4HgNQDTg2gDe2PjLKSaZ1tUvBybWb90QfLowOa3MWP3zQvEPJSCLjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024477874</pqid></control><display><type>article</type><title>H2O2-Mediated Oxidation of Zero-Valent Silver and Resultant Interactions among Silver Nanoparticles, Silver Ions, and Reactive Oxygen Species</title><source>ACS Publications</source><source>MEDLINE</source><creator>He, Di ; Garg, Shikha ; Waite, T. David</creator><creatorcontrib>He, Di ; Garg, Shikha ; Waite, T. David</creatorcontrib><description>The H2O2-mediated oxidation of silver nanoparticles (AgNPs) over a range of pH (3.0–14.0) is investigated here, and an electron charging–discharging model capable of describing the experimental results obtained is developed. AgNPs initially react with H2O2 to form Ag+ and superoxide, with these products subsequently reacting to reform AgNPs (in-situ-formed AgNPs) via an electron charging–discharging mechanism. Our experimental results show that the AgNP reactivity toward H2O2 varies significantly with pH, with the variation at high pH (&gt;10) due particularly to the differences in the reactivity of H2O2 and its conjugate base HO2 – with AgNPs whereas at lower pH (3–10) the pH dependence of H2O2 decay is accounted for, at least in part, by the pH dependence of the rate of superoxide disproportionation. Our results further demonstrate that the in-situ-formed AgNPs resulting from the superoxide-mediated reduction of Ag+ have a different size and reactivity compared to those of the citrate-stabilized particles initially present. The turnover frequency for AgNPs varies significantly with pH and is as high as 1776.0 min–1 at pH 11.0, reducing to 144.2 min–1 at pH 10.0 and 3.2 min–1 at pH 3.0.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la300929g</identifier><identifier>PMID: 22616806</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Cations, Monovalent ; Chemistry ; Citrates - chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Hydrogen Peroxide - chemistry ; Hydrogen-Ion Concentration ; Kinetics ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Microscopy, Electron, Transmission ; Models, Chemical ; Oxidation-Reduction ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Reactive Oxygen Species - chemistry ; Silver - chemistry ; Superoxide Dismutase - chemistry</subject><ispartof>Langmuir, 2012-07, Vol.28 (27), p.10266-10275</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la300929g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la300929g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26141779$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22616806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Di</creatorcontrib><creatorcontrib>Garg, Shikha</creatorcontrib><creatorcontrib>Waite, T. David</creatorcontrib><title>H2O2-Mediated Oxidation of Zero-Valent Silver and Resultant Interactions among Silver Nanoparticles, Silver Ions, and Reactive Oxygen Species</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The H2O2-mediated oxidation of silver nanoparticles (AgNPs) over a range of pH (3.0–14.0) is investigated here, and an electron charging–discharging model capable of describing the experimental results obtained is developed. AgNPs initially react with H2O2 to form Ag+ and superoxide, with these products subsequently reacting to reform AgNPs (in-situ-formed AgNPs) via an electron charging–discharging mechanism. Our experimental results show that the AgNP reactivity toward H2O2 varies significantly with pH, with the variation at high pH (&gt;10) due particularly to the differences in the reactivity of H2O2 and its conjugate base HO2 – with AgNPs whereas at lower pH (3–10) the pH dependence of H2O2 decay is accounted for, at least in part, by the pH dependence of the rate of superoxide disproportionation. Our results further demonstrate that the in-situ-formed AgNPs resulting from the superoxide-mediated reduction of Ag+ have a different size and reactivity compared to those of the citrate-stabilized particles initially present. The turnover frequency for AgNPs varies significantly with pH and is as high as 1776.0 min–1 at pH 11.0, reducing to 144.2 min–1 at pH 10.0 and 3.2 min–1 at pH 3.0.</description><subject>Cations, Monovalent</subject><subject>Chemistry</subject><subject>Citrates - chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Microscopy, Electron, Transmission</subject><subject>Models, Chemical</subject><subject>Oxidation-Reduction</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Reactive Oxygen Species - chemistry</subject><subject>Silver - chemistry</subject><subject>Superoxide Dismutase - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkc1O6zAQhS0Egt7CghdA2SCxIOC_2MkSVXCpBFTib8EmGpxJZeQ6xU4QPATvfF3dFlYjzXxzjuYMIYeMnjHK2bkDQWnFq_kWGbGC07woud4mI6qlyLVUYo_8ifGNJkjIapfsca6YKqkake9rPuP5LTYWemyy2adtoLedz7o2e8HQ5c_g0PfZg3UfGDLwTXaPcXA9pObU9xjArPiYwaLz8w13B75bQuitcRhPN91p4k7XGqu1D0yGX3P02cMSjcW4T3ZacBEP1nVMnq4uHyfX-c3s73RycZMDV7rPX4tW6KYVBa9EaTg1UrdMmVZIoQTQAgQwXWAFQhVlA2lStY2RZakRGU95jMnJf91l6N4HjH29sNGgc-CxG2KdUpVS6zLlNyZHa3R4XWBTL4NdQPiqNxEm4HgNQDTg2gDe2PjLKSaZ1tUvBybWb90QfLowOa3MWP3zQvEPJSCLjg</recordid><startdate>20120710</startdate><enddate>20120710</enddate><creator>He, Di</creator><creator>Garg, Shikha</creator><creator>Waite, T. David</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20120710</creationdate><title>H2O2-Mediated Oxidation of Zero-Valent Silver and Resultant Interactions among Silver Nanoparticles, Silver Ions, and Reactive Oxygen Species</title><author>He, Di ; Garg, Shikha ; Waite, T. David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a267t-b5f37df352938c20c47f16cf34363a05a3a175e9a3658da6cf9fdc4887ee12463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cations, Monovalent</topic><topic>Chemistry</topic><topic>Citrates - chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Microscopy, Electron, Transmission</topic><topic>Models, Chemical</topic><topic>Oxidation-Reduction</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Reactive Oxygen Species - chemistry</topic><topic>Silver - chemistry</topic><topic>Superoxide Dismutase - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Di</creatorcontrib><creatorcontrib>Garg, Shikha</creatorcontrib><creatorcontrib>Waite, T. David</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Di</au><au>Garg, Shikha</au><au>Waite, T. David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H2O2-Mediated Oxidation of Zero-Valent Silver and Resultant Interactions among Silver Nanoparticles, Silver Ions, and Reactive Oxygen Species</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2012-07-10</date><risdate>2012</risdate><volume>28</volume><issue>27</issue><spage>10266</spage><epage>10275</epage><pages>10266-10275</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>The H2O2-mediated oxidation of silver nanoparticles (AgNPs) over a range of pH (3.0–14.0) is investigated here, and an electron charging–discharging model capable of describing the experimental results obtained is developed. AgNPs initially react with H2O2 to form Ag+ and superoxide, with these products subsequently reacting to reform AgNPs (in-situ-formed AgNPs) via an electron charging–discharging mechanism. Our experimental results show that the AgNP reactivity toward H2O2 varies significantly with pH, with the variation at high pH (&gt;10) due particularly to the differences in the reactivity of H2O2 and its conjugate base HO2 – with AgNPs whereas at lower pH (3–10) the pH dependence of H2O2 decay is accounted for, at least in part, by the pH dependence of the rate of superoxide disproportionation. Our results further demonstrate that the in-situ-formed AgNPs resulting from the superoxide-mediated reduction of Ag+ have a different size and reactivity compared to those of the citrate-stabilized particles initially present. The turnover frequency for AgNPs varies significantly with pH and is as high as 1776.0 min–1 at pH 11.0, reducing to 144.2 min–1 at pH 10.0 and 3.2 min–1 at pH 3.0.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22616806</pmid><doi>10.1021/la300929g</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2012-07, Vol.28 (27), p.10266-10275
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1024477874
source ACS Publications; MEDLINE
subjects Cations, Monovalent
Chemistry
Citrates - chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
Hydrogen Peroxide - chemistry
Hydrogen-Ion Concentration
Kinetics
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
Microscopy, Electron, Transmission
Models, Chemical
Oxidation-Reduction
Particle Size
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Reactive Oxygen Species - chemistry
Silver - chemistry
Superoxide Dismutase - chemistry
title H2O2-Mediated Oxidation of Zero-Valent Silver and Resultant Interactions among Silver Nanoparticles, Silver Ions, and Reactive Oxygen Species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H2O2-Mediated%20Oxidation%20of%20Zero-Valent%20Silver%20and%20Resultant%20Interactions%20among%20Silver%20Nanoparticles,%20Silver%20Ions,%20and%20Reactive%20Oxygen%20Species&rft.jtitle=Langmuir&rft.au=He,%20Di&rft.date=2012-07-10&rft.volume=28&rft.issue=27&rft.spage=10266&rft.epage=10275&rft.pages=10266-10275&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la300929g&rft_dat=%3Cproquest_pubme%3E1024477874%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024477874&rft_id=info:pmid/22616806&rfr_iscdi=true