H2O2-Mediated Oxidation of Zero-Valent Silver and Resultant Interactions among Silver Nanoparticles, Silver Ions, and Reactive Oxygen Species
The H2O2-mediated oxidation of silver nanoparticles (AgNPs) over a range of pH (3.0–14.0) is investigated here, and an electron charging–discharging model capable of describing the experimental results obtained is developed. AgNPs initially react with H2O2 to form Ag+ and superoxide, with these prod...
Gespeichert in:
Veröffentlicht in: | Langmuir 2012-07, Vol.28 (27), p.10266-10275 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10275 |
---|---|
container_issue | 27 |
container_start_page | 10266 |
container_title | Langmuir |
container_volume | 28 |
creator | He, Di Garg, Shikha Waite, T. David |
description | The H2O2-mediated oxidation of silver nanoparticles (AgNPs) over a range of pH (3.0–14.0) is investigated here, and an electron charging–discharging model capable of describing the experimental results obtained is developed. AgNPs initially react with H2O2 to form Ag+ and superoxide, with these products subsequently reacting to reform AgNPs (in-situ-formed AgNPs) via an electron charging–discharging mechanism. Our experimental results show that the AgNP reactivity toward H2O2 varies significantly with pH, with the variation at high pH (>10) due particularly to the differences in the reactivity of H2O2 and its conjugate base HO2 – with AgNPs whereas at lower pH (3–10) the pH dependence of H2O2 decay is accounted for, at least in part, by the pH dependence of the rate of superoxide disproportionation. Our results further demonstrate that the in-situ-formed AgNPs resulting from the superoxide-mediated reduction of Ag+ have a different size and reactivity compared to those of the citrate-stabilized particles initially present. The turnover frequency for AgNPs varies significantly with pH and is as high as 1776.0 min–1 at pH 11.0, reducing to 144.2 min–1 at pH 10.0 and 3.2 min–1 at pH 3.0. |
doi_str_mv | 10.1021/la300929g |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1024477874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024477874</sourcerecordid><originalsourceid>FETCH-LOGICAL-a267t-b5f37df352938c20c47f16cf34363a05a3a175e9a3658da6cf9fdc4887ee12463</originalsourceid><addsrcrecordid>eNpFkc1O6zAQhS0Egt7CghdA2SCxIOC_2MkSVXCpBFTib8EmGpxJZeQ6xU4QPATvfF3dFlYjzXxzjuYMIYeMnjHK2bkDQWnFq_kWGbGC07woud4mI6qlyLVUYo_8ifGNJkjIapfsca6YKqkake9rPuP5LTYWemyy2adtoLedz7o2e8HQ5c_g0PfZg3UfGDLwTXaPcXA9pObU9xjArPiYwaLz8w13B75bQuitcRhPN91p4k7XGqu1D0yGX3P02cMSjcW4T3ZacBEP1nVMnq4uHyfX-c3s73RycZMDV7rPX4tW6KYVBa9EaTg1UrdMmVZIoQTQAgQwXWAFQhVlA2lStY2RZakRGU95jMnJf91l6N4HjH29sNGgc-CxG2KdUpVS6zLlNyZHa3R4XWBTL4NdQPiqNxEm4HgNQDTg2gDe2PjLKSaZ1tUvBybWb90QfLowOa3MWP3zQvEPJSCLjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024477874</pqid></control><display><type>article</type><title>H2O2-Mediated Oxidation of Zero-Valent Silver and Resultant Interactions among Silver Nanoparticles, Silver Ions, and Reactive Oxygen Species</title><source>ACS Publications</source><source>MEDLINE</source><creator>He, Di ; Garg, Shikha ; Waite, T. David</creator><creatorcontrib>He, Di ; Garg, Shikha ; Waite, T. David</creatorcontrib><description>The H2O2-mediated oxidation of silver nanoparticles (AgNPs) over a range of pH (3.0–14.0) is investigated here, and an electron charging–discharging model capable of describing the experimental results obtained is developed. AgNPs initially react with H2O2 to form Ag+ and superoxide, with these products subsequently reacting to reform AgNPs (in-situ-formed AgNPs) via an electron charging–discharging mechanism. Our experimental results show that the AgNP reactivity toward H2O2 varies significantly with pH, with the variation at high pH (>10) due particularly to the differences in the reactivity of H2O2 and its conjugate base HO2 – with AgNPs whereas at lower pH (3–10) the pH dependence of H2O2 decay is accounted for, at least in part, by the pH dependence of the rate of superoxide disproportionation. Our results further demonstrate that the in-situ-formed AgNPs resulting from the superoxide-mediated reduction of Ag+ have a different size and reactivity compared to those of the citrate-stabilized particles initially present. The turnover frequency for AgNPs varies significantly with pH and is as high as 1776.0 min–1 at pH 11.0, reducing to 144.2 min–1 at pH 10.0 and 3.2 min–1 at pH 3.0.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la300929g</identifier><identifier>PMID: 22616806</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Cations, Monovalent ; Chemistry ; Citrates - chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Hydrogen Peroxide - chemistry ; Hydrogen-Ion Concentration ; Kinetics ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Microscopy, Electron, Transmission ; Models, Chemical ; Oxidation-Reduction ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Reactive Oxygen Species - chemistry ; Silver - chemistry ; Superoxide Dismutase - chemistry</subject><ispartof>Langmuir, 2012-07, Vol.28 (27), p.10266-10275</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la300929g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la300929g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26141779$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22616806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Di</creatorcontrib><creatorcontrib>Garg, Shikha</creatorcontrib><creatorcontrib>Waite, T. David</creatorcontrib><title>H2O2-Mediated Oxidation of Zero-Valent Silver and Resultant Interactions among Silver Nanoparticles, Silver Ions, and Reactive Oxygen Species</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The H2O2-mediated oxidation of silver nanoparticles (AgNPs) over a range of pH (3.0–14.0) is investigated here, and an electron charging–discharging model capable of describing the experimental results obtained is developed. AgNPs initially react with H2O2 to form Ag+ and superoxide, with these products subsequently reacting to reform AgNPs (in-situ-formed AgNPs) via an electron charging–discharging mechanism. Our experimental results show that the AgNP reactivity toward H2O2 varies significantly with pH, with the variation at high pH (>10) due particularly to the differences in the reactivity of H2O2 and its conjugate base HO2 – with AgNPs whereas at lower pH (3–10) the pH dependence of H2O2 decay is accounted for, at least in part, by the pH dependence of the rate of superoxide disproportionation. Our results further demonstrate that the in-situ-formed AgNPs resulting from the superoxide-mediated reduction of Ag+ have a different size and reactivity compared to those of the citrate-stabilized particles initially present. The turnover frequency for AgNPs varies significantly with pH and is as high as 1776.0 min–1 at pH 11.0, reducing to 144.2 min–1 at pH 10.0 and 3.2 min–1 at pH 3.0.</description><subject>Cations, Monovalent</subject><subject>Chemistry</subject><subject>Citrates - chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Microscopy, Electron, Transmission</subject><subject>Models, Chemical</subject><subject>Oxidation-Reduction</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Reactive Oxygen Species - chemistry</subject><subject>Silver - chemistry</subject><subject>Superoxide Dismutase - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkc1O6zAQhS0Egt7CghdA2SCxIOC_2MkSVXCpBFTib8EmGpxJZeQ6xU4QPATvfF3dFlYjzXxzjuYMIYeMnjHK2bkDQWnFq_kWGbGC07woud4mI6qlyLVUYo_8ifGNJkjIapfsca6YKqkake9rPuP5LTYWemyy2adtoLedz7o2e8HQ5c_g0PfZg3UfGDLwTXaPcXA9pObU9xjArPiYwaLz8w13B75bQuitcRhPN91p4k7XGqu1D0yGX3P02cMSjcW4T3ZacBEP1nVMnq4uHyfX-c3s73RycZMDV7rPX4tW6KYVBa9EaTg1UrdMmVZIoQTQAgQwXWAFQhVlA2lStY2RZakRGU95jMnJf91l6N4HjH29sNGgc-CxG2KdUpVS6zLlNyZHa3R4XWBTL4NdQPiqNxEm4HgNQDTg2gDe2PjLKSaZ1tUvBybWb90QfLowOa3MWP3zQvEPJSCLjg</recordid><startdate>20120710</startdate><enddate>20120710</enddate><creator>He, Di</creator><creator>Garg, Shikha</creator><creator>Waite, T. David</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20120710</creationdate><title>H2O2-Mediated Oxidation of Zero-Valent Silver and Resultant Interactions among Silver Nanoparticles, Silver Ions, and Reactive Oxygen Species</title><author>He, Di ; Garg, Shikha ; Waite, T. David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a267t-b5f37df352938c20c47f16cf34363a05a3a175e9a3658da6cf9fdc4887ee12463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cations, Monovalent</topic><topic>Chemistry</topic><topic>Citrates - chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Microscopy, Electron, Transmission</topic><topic>Models, Chemical</topic><topic>Oxidation-Reduction</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Reactive Oxygen Species - chemistry</topic><topic>Silver - chemistry</topic><topic>Superoxide Dismutase - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Di</creatorcontrib><creatorcontrib>Garg, Shikha</creatorcontrib><creatorcontrib>Waite, T. David</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Di</au><au>Garg, Shikha</au><au>Waite, T. David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H2O2-Mediated Oxidation of Zero-Valent Silver and Resultant Interactions among Silver Nanoparticles, Silver Ions, and Reactive Oxygen Species</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2012-07-10</date><risdate>2012</risdate><volume>28</volume><issue>27</issue><spage>10266</spage><epage>10275</epage><pages>10266-10275</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>The H2O2-mediated oxidation of silver nanoparticles (AgNPs) over a range of pH (3.0–14.0) is investigated here, and an electron charging–discharging model capable of describing the experimental results obtained is developed. AgNPs initially react with H2O2 to form Ag+ and superoxide, with these products subsequently reacting to reform AgNPs (in-situ-formed AgNPs) via an electron charging–discharging mechanism. Our experimental results show that the AgNP reactivity toward H2O2 varies significantly with pH, with the variation at high pH (>10) due particularly to the differences in the reactivity of H2O2 and its conjugate base HO2 – with AgNPs whereas at lower pH (3–10) the pH dependence of H2O2 decay is accounted for, at least in part, by the pH dependence of the rate of superoxide disproportionation. Our results further demonstrate that the in-situ-formed AgNPs resulting from the superoxide-mediated reduction of Ag+ have a different size and reactivity compared to those of the citrate-stabilized particles initially present. The turnover frequency for AgNPs varies significantly with pH and is as high as 1776.0 min–1 at pH 11.0, reducing to 144.2 min–1 at pH 10.0 and 3.2 min–1 at pH 3.0.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22616806</pmid><doi>10.1021/la300929g</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2012-07, Vol.28 (27), p.10266-10275 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_1024477874 |
source | ACS Publications; MEDLINE |
subjects | Cations, Monovalent Chemistry Citrates - chemistry Colloidal state and disperse state Exact sciences and technology General and physical chemistry Hydrogen Peroxide - chemistry Hydrogen-Ion Concentration Kinetics Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure Microscopy, Electron, Transmission Models, Chemical Oxidation-Reduction Particle Size Physical and chemical studies. Granulometry. Electrokinetic phenomena Reactive Oxygen Species - chemistry Silver - chemistry Superoxide Dismutase - chemistry |
title | H2O2-Mediated Oxidation of Zero-Valent Silver and Resultant Interactions among Silver Nanoparticles, Silver Ions, and Reactive Oxygen Species |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H2O2-Mediated%20Oxidation%20of%20Zero-Valent%20Silver%20and%20Resultant%20Interactions%20among%20Silver%20Nanoparticles,%20Silver%20Ions,%20and%20Reactive%20Oxygen%20Species&rft.jtitle=Langmuir&rft.au=He,%20Di&rft.date=2012-07-10&rft.volume=28&rft.issue=27&rft.spage=10266&rft.epage=10275&rft.pages=10266-10275&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la300929g&rft_dat=%3Cproquest_pubme%3E1024477874%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024477874&rft_id=info:pmid/22616806&rfr_iscdi=true |