Putative members of the Arabidopsis Nup107‐160 nuclear pore sub‐complex contribute to pathogen defense
Summary In eukaryotic cells, transduction of external stimuli into the nucleus to induce transcription and export of mRNAs for translation in the cytoplasm is mediated by nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups). We previously reported that Arabidopsis MOS3, encoding the...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2012-06, Vol.70 (5), p.796-808 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 808 |
---|---|
container_issue | 5 |
container_start_page | 796 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 70 |
creator | Wiermer, Marcel Cheng, Yu Ti Imkampe, Julia Li, Meilan Wang, Dongmei Lipka, Volker Li, Xin |
description | Summary
In eukaryotic cells, transduction of external stimuli into the nucleus to induce transcription and export of mRNAs for translation in the cytoplasm is mediated by nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups). We previously reported that Arabidopsis MOS3, encoding the homolog of vertebrate Nup96, is required for plant immunity and constitutive resistance mediated by the de‐regulated Toll interleukin 1 receptor/nucleotide‐binding/leucine‐rich repeat (TNL)‐type R gene snc1. In vertebrates, Nup96 is a component of the conserved Nup107‐160 nuclear pore sub‐complex, and implicated in immunity‐related mRNA export. Here, we used a reverse genetics approach to examine the requirement for additional subunits of the predicted Arabidopsis Nup107‐160 complex in plant immunity. We show that, among eight putative complex members, beside MOS3, only plants with defects in Nup160 or Seh1 are impaired in basal resistance. Constitutive resistance in the snc1 mutant and immunity mediated by TNL‐type R genes also depend on functional Nup160 and have a partial requirement for Seh1. Conversely, resistance conferred by coiled coil‐type immune receptors operates largely independently of both genes, demonstrating specific contributions to plant defense signaling. Our functional analysis further revealed that defects in nup160 and seh1 result in nuclear accumulation of poly(A) mRNA, and, in the case of nup160, considerable depletion of EDS1, a key positive regulator of basal and TNL‐triggered resistance. These findings suggest that Nup160 is required for nuclear mRNA export and full expression of EDS1‐conditioned resistance pathways in Arabidopsis. |
doi_str_mv | 10.1111/j.1365-313X.2012.04928.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1024477092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666415971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5488-ad8b412a831b4f23086b7d0c897858650c9b0767fc8481fe4dd22fe76a1c4b253</originalsourceid><addsrcrecordid>eNqNkcFu1TAQRS0Eoo_CLyBLCIlNUttxbGfBoqpooaqgiyKxs2xnQhMlcbCT9nXXT-Ab-RKcvkeRWOGNrfGZO1dzEcKU5DSdoy6nhSizghbfckYoywmvmMq3T9Dm8eMp2pBKkExyyg7Qixg7QqgsBH-ODhhjSglebVB3ucxmbm8ADzBYCBH7Bs_XgI-DsW3tp9hG_HmZKJG_7n9SQfC4uB5MwJMPgONiU9n5Yephi50f59DaZQY8ezyZ-dp_hxHX0MAY4SV61pg-wqv9fYi-nn64OvmYXXw5-3RyfJG5kiuVmVrZZNmoglresIIoYWVNnKqkKpUoiasskUI2TnFFG-B1zVgDUhjquGVlcYje7XSn4H8sEGc9tNFB35sR_BI1JYxzKUnFEvrmH7TzSxiTu0TRkiguHgTVjnLBxxig0VNoBxPuEqTXPHSn17Xrde16zUM_5KG3qfX1fsBiB6gfG_8EkIC3e8BEZ_ommNG18S9XVlRRwRP3fsfdtj3c_bcBfXV5vr6K36FtpzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015084625</pqid></control><display><type>article</type><title>Putative members of the Arabidopsis Nup107‐160 nuclear pore sub‐complex contribute to pathogen defense</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><creator>Wiermer, Marcel ; Cheng, Yu Ti ; Imkampe, Julia ; Li, Meilan ; Wang, Dongmei ; Lipka, Volker ; Li, Xin</creator><creatorcontrib>Wiermer, Marcel ; Cheng, Yu Ti ; Imkampe, Julia ; Li, Meilan ; Wang, Dongmei ; Lipka, Volker ; Li, Xin</creatorcontrib><description>Summary
In eukaryotic cells, transduction of external stimuli into the nucleus to induce transcription and export of mRNAs for translation in the cytoplasm is mediated by nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups). We previously reported that Arabidopsis MOS3, encoding the homolog of vertebrate Nup96, is required for plant immunity and constitutive resistance mediated by the de‐regulated Toll interleukin 1 receptor/nucleotide‐binding/leucine‐rich repeat (TNL)‐type R gene snc1. In vertebrates, Nup96 is a component of the conserved Nup107‐160 nuclear pore sub‐complex, and implicated in immunity‐related mRNA export. Here, we used a reverse genetics approach to examine the requirement for additional subunits of the predicted Arabidopsis Nup107‐160 complex in plant immunity. We show that, among eight putative complex members, beside MOS3, only plants with defects in Nup160 or Seh1 are impaired in basal resistance. Constitutive resistance in the snc1 mutant and immunity mediated by TNL‐type R genes also depend on functional Nup160 and have a partial requirement for Seh1. Conversely, resistance conferred by coiled coil‐type immune receptors operates largely independently of both genes, demonstrating specific contributions to plant defense signaling. Our functional analysis further revealed that defects in nup160 and seh1 result in nuclear accumulation of poly(A) mRNA, and, in the case of nup160, considerable depletion of EDS1, a key positive regulator of basal and TNL‐triggered resistance. These findings suggest that Nup160 is required for nuclear mRNA export and full expression of EDS1‐conditioned resistance pathways in Arabidopsis.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313X.2012.04928.x</identifier><identifier>PMID: 22288649</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Active Transport, Cell Nucleus ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - immunology ; Arabidopsis - microbiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biological and medical sciences ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Cytoplasm - genetics ; Cytoplasm - metabolism ; Disease Resistance ; DNA, Plant - genetics ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Plant ; Genes, Plant ; mRNA export ; Mutation ; Nuclear Pore - genetics ; Nuclear Pore - metabolism ; Nuclear Pore Complex Proteins - genetics ; Nuclear Pore Complex Proteins - metabolism ; nucleocytoplasmic trafficking ; nucleoporins ; Nup107‐160 complex ; Oomycetes - immunology ; Oomycetes - pathogenicity ; Plant biology ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant Immunity ; Plant pathology ; Plant physiology and development ; Plant resistance ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - immunology ; Plants, Genetically Modified - metabolism ; Poly A - genetics ; Poly A - metabolism ; Proteins ; Reverse Genetics - methods ; RNA Transport ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Plant - genetics ; RNA, Plant - metabolism ; Signal Transduction</subject><ispartof>The Plant journal : for cell and molecular biology, 2012-06, Vol.70 (5), p.796-808</ispartof><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5488-ad8b412a831b4f23086b7d0c897858650c9b0767fc8481fe4dd22fe76a1c4b253</citedby><cites>FETCH-LOGICAL-c5488-ad8b412a831b4f23086b7d0c897858650c9b0767fc8481fe4dd22fe76a1c4b253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2012.04928.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2012.04928.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25918164$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22288649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wiermer, Marcel</creatorcontrib><creatorcontrib>Cheng, Yu Ti</creatorcontrib><creatorcontrib>Imkampe, Julia</creatorcontrib><creatorcontrib>Li, Meilan</creatorcontrib><creatorcontrib>Wang, Dongmei</creatorcontrib><creatorcontrib>Lipka, Volker</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><title>Putative members of the Arabidopsis Nup107‐160 nuclear pore sub‐complex contribute to pathogen defense</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary
In eukaryotic cells, transduction of external stimuli into the nucleus to induce transcription and export of mRNAs for translation in the cytoplasm is mediated by nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups). We previously reported that Arabidopsis MOS3, encoding the homolog of vertebrate Nup96, is required for plant immunity and constitutive resistance mediated by the de‐regulated Toll interleukin 1 receptor/nucleotide‐binding/leucine‐rich repeat (TNL)‐type R gene snc1. In vertebrates, Nup96 is a component of the conserved Nup107‐160 nuclear pore sub‐complex, and implicated in immunity‐related mRNA export. Here, we used a reverse genetics approach to examine the requirement for additional subunits of the predicted Arabidopsis Nup107‐160 complex in plant immunity. We show that, among eight putative complex members, beside MOS3, only plants with defects in Nup160 or Seh1 are impaired in basal resistance. Constitutive resistance in the snc1 mutant and immunity mediated by TNL‐type R genes also depend on functional Nup160 and have a partial requirement for Seh1. Conversely, resistance conferred by coiled coil‐type immune receptors operates largely independently of both genes, demonstrating specific contributions to plant defense signaling. Our functional analysis further revealed that defects in nup160 and seh1 result in nuclear accumulation of poly(A) mRNA, and, in the case of nup160, considerable depletion of EDS1, a key positive regulator of basal and TNL‐triggered resistance. These findings suggest that Nup160 is required for nuclear mRNA export and full expression of EDS1‐conditioned resistance pathways in Arabidopsis.</description><subject>Active Transport, Cell Nucleus</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - immunology</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Cytoplasm - genetics</subject><subject>Cytoplasm - metabolism</subject><subject>Disease Resistance</subject><subject>DNA, Plant - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>mRNA export</subject><subject>Mutation</subject><subject>Nuclear Pore - genetics</subject><subject>Nuclear Pore - metabolism</subject><subject>Nuclear Pore Complex Proteins - genetics</subject><subject>Nuclear Pore Complex Proteins - metabolism</subject><subject>nucleocytoplasmic trafficking</subject><subject>nucleoporins</subject><subject>Nup107‐160 complex</subject><subject>Oomycetes - immunology</subject><subject>Oomycetes - pathogenicity</subject><subject>Plant biology</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Immunity</subject><subject>Plant pathology</subject><subject>Plant physiology and development</subject><subject>Plant resistance</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - immunology</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Poly A - genetics</subject><subject>Poly A - metabolism</subject><subject>Proteins</subject><subject>Reverse Genetics - methods</subject><subject>RNA Transport</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Plant - metabolism</subject><subject>Signal Transduction</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1TAQRS0Eoo_CLyBLCIlNUttxbGfBoqpooaqgiyKxs2xnQhMlcbCT9nXXT-Ab-RKcvkeRWOGNrfGZO1dzEcKU5DSdoy6nhSizghbfckYoywmvmMq3T9Dm8eMp2pBKkExyyg7Qixg7QqgsBH-ODhhjSglebVB3ucxmbm8ADzBYCBH7Bs_XgI-DsW3tp9hG_HmZKJG_7n9SQfC4uB5MwJMPgONiU9n5Yephi50f59DaZQY8ezyZ-dp_hxHX0MAY4SV61pg-wqv9fYi-nn64OvmYXXw5-3RyfJG5kiuVmVrZZNmoglresIIoYWVNnKqkKpUoiasskUI2TnFFG-B1zVgDUhjquGVlcYje7XSn4H8sEGc9tNFB35sR_BI1JYxzKUnFEvrmH7TzSxiTu0TRkiguHgTVjnLBxxig0VNoBxPuEqTXPHSn17Xrde16zUM_5KG3qfX1fsBiB6gfG_8EkIC3e8BEZ_ommNG18S9XVlRRwRP3fsfdtj3c_bcBfXV5vr6K36FtpzI</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Wiermer, Marcel</creator><creator>Cheng, Yu Ti</creator><creator>Imkampe, Julia</creator><creator>Li, Meilan</creator><creator>Wang, Dongmei</creator><creator>Lipka, Volker</creator><creator>Li, Xin</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201206</creationdate><title>Putative members of the Arabidopsis Nup107‐160 nuclear pore sub‐complex contribute to pathogen defense</title><author>Wiermer, Marcel ; Cheng, Yu Ti ; Imkampe, Julia ; Li, Meilan ; Wang, Dongmei ; Lipka, Volker ; Li, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5488-ad8b412a831b4f23086b7d0c897858650c9b0767fc8481fe4dd22fe76a1c4b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - immunology</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Cytoplasm - genetics</topic><topic>Cytoplasm - metabolism</topic><topic>Disease Resistance</topic><topic>DNA, Plant - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>mRNA export</topic><topic>Mutation</topic><topic>Nuclear Pore - genetics</topic><topic>Nuclear Pore - metabolism</topic><topic>Nuclear Pore Complex Proteins - genetics</topic><topic>Nuclear Pore Complex Proteins - metabolism</topic><topic>nucleocytoplasmic trafficking</topic><topic>nucleoporins</topic><topic>Nup107‐160 complex</topic><topic>Oomycetes - immunology</topic><topic>Oomycetes - pathogenicity</topic><topic>Plant biology</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Immunity</topic><topic>Plant pathology</topic><topic>Plant physiology and development</topic><topic>Plant resistance</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - immunology</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Poly A - genetics</topic><topic>Poly A - metabolism</topic><topic>Proteins</topic><topic>Reverse Genetics - methods</topic><topic>RNA Transport</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Plant - metabolism</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiermer, Marcel</creatorcontrib><creatorcontrib>Cheng, Yu Ti</creatorcontrib><creatorcontrib>Imkampe, Julia</creatorcontrib><creatorcontrib>Li, Meilan</creatorcontrib><creatorcontrib>Wang, Dongmei</creatorcontrib><creatorcontrib>Lipka, Volker</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiermer, Marcel</au><au>Cheng, Yu Ti</au><au>Imkampe, Julia</au><au>Li, Meilan</au><au>Wang, Dongmei</au><au>Lipka, Volker</au><au>Li, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Putative members of the Arabidopsis Nup107‐160 nuclear pore sub‐complex contribute to pathogen defense</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2012-06</date><risdate>2012</risdate><volume>70</volume><issue>5</issue><spage>796</spage><epage>808</epage><pages>796-808</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary
In eukaryotic cells, transduction of external stimuli into the nucleus to induce transcription and export of mRNAs for translation in the cytoplasm is mediated by nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups). We previously reported that Arabidopsis MOS3, encoding the homolog of vertebrate Nup96, is required for plant immunity and constitutive resistance mediated by the de‐regulated Toll interleukin 1 receptor/nucleotide‐binding/leucine‐rich repeat (TNL)‐type R gene snc1. In vertebrates, Nup96 is a component of the conserved Nup107‐160 nuclear pore sub‐complex, and implicated in immunity‐related mRNA export. Here, we used a reverse genetics approach to examine the requirement for additional subunits of the predicted Arabidopsis Nup107‐160 complex in plant immunity. We show that, among eight putative complex members, beside MOS3, only plants with defects in Nup160 or Seh1 are impaired in basal resistance. Constitutive resistance in the snc1 mutant and immunity mediated by TNL‐type R genes also depend on functional Nup160 and have a partial requirement for Seh1. Conversely, resistance conferred by coiled coil‐type immune receptors operates largely independently of both genes, demonstrating specific contributions to plant defense signaling. Our functional analysis further revealed that defects in nup160 and seh1 result in nuclear accumulation of poly(A) mRNA, and, in the case of nup160, considerable depletion of EDS1, a key positive regulator of basal and TNL‐triggered resistance. These findings suggest that Nup160 is required for nuclear mRNA export and full expression of EDS1‐conditioned resistance pathways in Arabidopsis.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22288649</pmid><doi>10.1111/j.1365-313X.2012.04928.x</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2012-06, Vol.70 (5), p.796-808 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_1024477092 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals |
subjects | Active Transport, Cell Nucleus Arabidopsis Arabidopsis - genetics Arabidopsis - immunology Arabidopsis - microbiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Biological and medical sciences Cell Nucleus - genetics Cell Nucleus - metabolism Cytoplasm - genetics Cytoplasm - metabolism Disease Resistance DNA, Plant - genetics DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation, Plant Genes, Plant mRNA export Mutation Nuclear Pore - genetics Nuclear Pore - metabolism Nuclear Pore Complex Proteins - genetics Nuclear Pore Complex Proteins - metabolism nucleocytoplasmic trafficking nucleoporins Nup107‐160 complex Oomycetes - immunology Oomycetes - pathogenicity Plant biology Plant Diseases - immunology Plant Diseases - microbiology Plant Immunity Plant pathology Plant physiology and development Plant resistance Plants, Genetically Modified - genetics Plants, Genetically Modified - immunology Plants, Genetically Modified - metabolism Poly A - genetics Poly A - metabolism Proteins Reverse Genetics - methods RNA Transport RNA, Messenger - genetics RNA, Messenger - metabolism RNA, Plant - genetics RNA, Plant - metabolism Signal Transduction |
title | Putative members of the Arabidopsis Nup107‐160 nuclear pore sub‐complex contribute to pathogen defense |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Putative%20members%20of%20the%20Arabidopsis%20Nup107%E2%80%90160%20nuclear%20pore%20sub%E2%80%90complex%20contribute%20to%20pathogen%20defense&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Wiermer,%20Marcel&rft.date=2012-06&rft.volume=70&rft.issue=5&rft.spage=796&rft.epage=808&rft.pages=796-808&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313X.2012.04928.x&rft_dat=%3Cproquest_cross%3E2666415971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015084625&rft_id=info:pmid/22288649&rfr_iscdi=true |