Putative members of the Arabidopsis Nup107‐160 nuclear pore sub‐complex contribute to pathogen defense

Summary In eukaryotic cells, transduction of external stimuli into the nucleus to induce transcription and export of mRNAs for translation in the cytoplasm is mediated by nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups). We previously reported that Arabidopsis MOS3, encoding the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2012-06, Vol.70 (5), p.796-808
Hauptverfasser: Wiermer, Marcel, Cheng, Yu Ti, Imkampe, Julia, Li, Meilan, Wang, Dongmei, Lipka, Volker, Li, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 808
container_issue 5
container_start_page 796
container_title The Plant journal : for cell and molecular biology
container_volume 70
creator Wiermer, Marcel
Cheng, Yu Ti
Imkampe, Julia
Li, Meilan
Wang, Dongmei
Lipka, Volker
Li, Xin
description Summary In eukaryotic cells, transduction of external stimuli into the nucleus to induce transcription and export of mRNAs for translation in the cytoplasm is mediated by nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups). We previously reported that Arabidopsis MOS3, encoding the homolog of vertebrate Nup96, is required for plant immunity and constitutive resistance mediated by the de‐regulated Toll interleukin 1 receptor/nucleotide‐binding/leucine‐rich repeat (TNL)‐type R gene snc1. In vertebrates, Nup96 is a component of the conserved Nup107‐160 nuclear pore sub‐complex, and implicated in immunity‐related mRNA export. Here, we used a reverse genetics approach to examine the requirement for additional subunits of the predicted Arabidopsis Nup107‐160 complex in plant immunity. We show that, among eight putative complex members, beside MOS3, only plants with defects in Nup160 or Seh1 are impaired in basal resistance. Constitutive resistance in the snc1 mutant and immunity mediated by TNL‐type R genes also depend on functional Nup160 and have a partial requirement for Seh1. Conversely, resistance conferred by coiled coil‐type immune receptors operates largely independently of both genes, demonstrating specific contributions to plant defense signaling. Our functional analysis further revealed that defects in nup160 and seh1 result in nuclear accumulation of poly(A) mRNA, and, in the case of nup160, considerable depletion of EDS1, a key positive regulator of basal and TNL‐triggered resistance. These findings suggest that Nup160 is required for nuclear mRNA export and full expression of EDS1‐conditioned resistance pathways in Arabidopsis.
doi_str_mv 10.1111/j.1365-313X.2012.04928.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1024477092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666415971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5488-ad8b412a831b4f23086b7d0c897858650c9b0767fc8481fe4dd22fe76a1c4b253</originalsourceid><addsrcrecordid>eNqNkcFu1TAQRS0Eoo_CLyBLCIlNUttxbGfBoqpooaqgiyKxs2xnQhMlcbCT9nXXT-Ab-RKcvkeRWOGNrfGZO1dzEcKU5DSdoy6nhSizghbfckYoywmvmMq3T9Dm8eMp2pBKkExyyg7Qixg7QqgsBH-ODhhjSglebVB3ucxmbm8ADzBYCBH7Bs_XgI-DsW3tp9hG_HmZKJG_7n9SQfC4uB5MwJMPgONiU9n5Yephi50f59DaZQY8ezyZ-dp_hxHX0MAY4SV61pg-wqv9fYi-nn64OvmYXXw5-3RyfJG5kiuVmVrZZNmoglresIIoYWVNnKqkKpUoiasskUI2TnFFG-B1zVgDUhjquGVlcYje7XSn4H8sEGc9tNFB35sR_BI1JYxzKUnFEvrmH7TzSxiTu0TRkiguHgTVjnLBxxig0VNoBxPuEqTXPHSn17Xrde16zUM_5KG3qfX1fsBiB6gfG_8EkIC3e8BEZ_ommNG18S9XVlRRwRP3fsfdtj3c_bcBfXV5vr6K36FtpzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015084625</pqid></control><display><type>article</type><title>Putative members of the Arabidopsis Nup107‐160 nuclear pore sub‐complex contribute to pathogen defense</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><creator>Wiermer, Marcel ; Cheng, Yu Ti ; Imkampe, Julia ; Li, Meilan ; Wang, Dongmei ; Lipka, Volker ; Li, Xin</creator><creatorcontrib>Wiermer, Marcel ; Cheng, Yu Ti ; Imkampe, Julia ; Li, Meilan ; Wang, Dongmei ; Lipka, Volker ; Li, Xin</creatorcontrib><description>Summary In eukaryotic cells, transduction of external stimuli into the nucleus to induce transcription and export of mRNAs for translation in the cytoplasm is mediated by nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups). We previously reported that Arabidopsis MOS3, encoding the homolog of vertebrate Nup96, is required for plant immunity and constitutive resistance mediated by the de‐regulated Toll interleukin 1 receptor/nucleotide‐binding/leucine‐rich repeat (TNL)‐type R gene snc1. In vertebrates, Nup96 is a component of the conserved Nup107‐160 nuclear pore sub‐complex, and implicated in immunity‐related mRNA export. Here, we used a reverse genetics approach to examine the requirement for additional subunits of the predicted Arabidopsis Nup107‐160 complex in plant immunity. We show that, among eight putative complex members, beside MOS3, only plants with defects in Nup160 or Seh1 are impaired in basal resistance. Constitutive resistance in the snc1 mutant and immunity mediated by TNL‐type R genes also depend on functional Nup160 and have a partial requirement for Seh1. Conversely, resistance conferred by coiled coil‐type immune receptors operates largely independently of both genes, demonstrating specific contributions to plant defense signaling. Our functional analysis further revealed that defects in nup160 and seh1 result in nuclear accumulation of poly(A) mRNA, and, in the case of nup160, considerable depletion of EDS1, a key positive regulator of basal and TNL‐triggered resistance. These findings suggest that Nup160 is required for nuclear mRNA export and full expression of EDS1‐conditioned resistance pathways in Arabidopsis.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313X.2012.04928.x</identifier><identifier>PMID: 22288649</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Active Transport, Cell Nucleus ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - immunology ; Arabidopsis - microbiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biological and medical sciences ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Cytoplasm - genetics ; Cytoplasm - metabolism ; Disease Resistance ; DNA, Plant - genetics ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Plant ; Genes, Plant ; mRNA export ; Mutation ; Nuclear Pore - genetics ; Nuclear Pore - metabolism ; Nuclear Pore Complex Proteins - genetics ; Nuclear Pore Complex Proteins - metabolism ; nucleocytoplasmic trafficking ; nucleoporins ; Nup107‐160 complex ; Oomycetes - immunology ; Oomycetes - pathogenicity ; Plant biology ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant Immunity ; Plant pathology ; Plant physiology and development ; Plant resistance ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - immunology ; Plants, Genetically Modified - metabolism ; Poly A - genetics ; Poly A - metabolism ; Proteins ; Reverse Genetics - methods ; RNA Transport ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Plant - genetics ; RNA, Plant - metabolism ; Signal Transduction</subject><ispartof>The Plant journal : for cell and molecular biology, 2012-06, Vol.70 (5), p.796-808</ispartof><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5488-ad8b412a831b4f23086b7d0c897858650c9b0767fc8481fe4dd22fe76a1c4b253</citedby><cites>FETCH-LOGICAL-c5488-ad8b412a831b4f23086b7d0c897858650c9b0767fc8481fe4dd22fe76a1c4b253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2012.04928.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2012.04928.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25918164$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22288649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wiermer, Marcel</creatorcontrib><creatorcontrib>Cheng, Yu Ti</creatorcontrib><creatorcontrib>Imkampe, Julia</creatorcontrib><creatorcontrib>Li, Meilan</creatorcontrib><creatorcontrib>Wang, Dongmei</creatorcontrib><creatorcontrib>Lipka, Volker</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><title>Putative members of the Arabidopsis Nup107‐160 nuclear pore sub‐complex contribute to pathogen defense</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary In eukaryotic cells, transduction of external stimuli into the nucleus to induce transcription and export of mRNAs for translation in the cytoplasm is mediated by nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups). We previously reported that Arabidopsis MOS3, encoding the homolog of vertebrate Nup96, is required for plant immunity and constitutive resistance mediated by the de‐regulated Toll interleukin 1 receptor/nucleotide‐binding/leucine‐rich repeat (TNL)‐type R gene snc1. In vertebrates, Nup96 is a component of the conserved Nup107‐160 nuclear pore sub‐complex, and implicated in immunity‐related mRNA export. Here, we used a reverse genetics approach to examine the requirement for additional subunits of the predicted Arabidopsis Nup107‐160 complex in plant immunity. We show that, among eight putative complex members, beside MOS3, only plants with defects in Nup160 or Seh1 are impaired in basal resistance. Constitutive resistance in the snc1 mutant and immunity mediated by TNL‐type R genes also depend on functional Nup160 and have a partial requirement for Seh1. Conversely, resistance conferred by coiled coil‐type immune receptors operates largely independently of both genes, demonstrating specific contributions to plant defense signaling. Our functional analysis further revealed that defects in nup160 and seh1 result in nuclear accumulation of poly(A) mRNA, and, in the case of nup160, considerable depletion of EDS1, a key positive regulator of basal and TNL‐triggered resistance. These findings suggest that Nup160 is required for nuclear mRNA export and full expression of EDS1‐conditioned resistance pathways in Arabidopsis.</description><subject>Active Transport, Cell Nucleus</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - immunology</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Cytoplasm - genetics</subject><subject>Cytoplasm - metabolism</subject><subject>Disease Resistance</subject><subject>DNA, Plant - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>mRNA export</subject><subject>Mutation</subject><subject>Nuclear Pore - genetics</subject><subject>Nuclear Pore - metabolism</subject><subject>Nuclear Pore Complex Proteins - genetics</subject><subject>Nuclear Pore Complex Proteins - metabolism</subject><subject>nucleocytoplasmic trafficking</subject><subject>nucleoporins</subject><subject>Nup107‐160 complex</subject><subject>Oomycetes - immunology</subject><subject>Oomycetes - pathogenicity</subject><subject>Plant biology</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Immunity</subject><subject>Plant pathology</subject><subject>Plant physiology and development</subject><subject>Plant resistance</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - immunology</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Poly A - genetics</subject><subject>Poly A - metabolism</subject><subject>Proteins</subject><subject>Reverse Genetics - methods</subject><subject>RNA Transport</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Plant - metabolism</subject><subject>Signal Transduction</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1TAQRS0Eoo_CLyBLCIlNUttxbGfBoqpooaqgiyKxs2xnQhMlcbCT9nXXT-Ab-RKcvkeRWOGNrfGZO1dzEcKU5DSdoy6nhSizghbfckYoywmvmMq3T9Dm8eMp2pBKkExyyg7Qixg7QqgsBH-ODhhjSglebVB3ucxmbm8ADzBYCBH7Bs_XgI-DsW3tp9hG_HmZKJG_7n9SQfC4uB5MwJMPgONiU9n5Yephi50f59DaZQY8ezyZ-dp_hxHX0MAY4SV61pg-wqv9fYi-nn64OvmYXXw5-3RyfJG5kiuVmVrZZNmoglresIIoYWVNnKqkKpUoiasskUI2TnFFG-B1zVgDUhjquGVlcYje7XSn4H8sEGc9tNFB35sR_BI1JYxzKUnFEvrmH7TzSxiTu0TRkiguHgTVjnLBxxig0VNoBxPuEqTXPHSn17Xrde16zUM_5KG3qfX1fsBiB6gfG_8EkIC3e8BEZ_ommNG18S9XVlRRwRP3fsfdtj3c_bcBfXV5vr6K36FtpzI</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Wiermer, Marcel</creator><creator>Cheng, Yu Ti</creator><creator>Imkampe, Julia</creator><creator>Li, Meilan</creator><creator>Wang, Dongmei</creator><creator>Lipka, Volker</creator><creator>Li, Xin</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201206</creationdate><title>Putative members of the Arabidopsis Nup107‐160 nuclear pore sub‐complex contribute to pathogen defense</title><author>Wiermer, Marcel ; Cheng, Yu Ti ; Imkampe, Julia ; Li, Meilan ; Wang, Dongmei ; Lipka, Volker ; Li, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5488-ad8b412a831b4f23086b7d0c897858650c9b0767fc8481fe4dd22fe76a1c4b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - immunology</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Cytoplasm - genetics</topic><topic>Cytoplasm - metabolism</topic><topic>Disease Resistance</topic><topic>DNA, Plant - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>mRNA export</topic><topic>Mutation</topic><topic>Nuclear Pore - genetics</topic><topic>Nuclear Pore - metabolism</topic><topic>Nuclear Pore Complex Proteins - genetics</topic><topic>Nuclear Pore Complex Proteins - metabolism</topic><topic>nucleocytoplasmic trafficking</topic><topic>nucleoporins</topic><topic>Nup107‐160 complex</topic><topic>Oomycetes - immunology</topic><topic>Oomycetes - pathogenicity</topic><topic>Plant biology</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Immunity</topic><topic>Plant pathology</topic><topic>Plant physiology and development</topic><topic>Plant resistance</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - immunology</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Poly A - genetics</topic><topic>Poly A - metabolism</topic><topic>Proteins</topic><topic>Reverse Genetics - methods</topic><topic>RNA Transport</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Plant - metabolism</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiermer, Marcel</creatorcontrib><creatorcontrib>Cheng, Yu Ti</creatorcontrib><creatorcontrib>Imkampe, Julia</creatorcontrib><creatorcontrib>Li, Meilan</creatorcontrib><creatorcontrib>Wang, Dongmei</creatorcontrib><creatorcontrib>Lipka, Volker</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiermer, Marcel</au><au>Cheng, Yu Ti</au><au>Imkampe, Julia</au><au>Li, Meilan</au><au>Wang, Dongmei</au><au>Lipka, Volker</au><au>Li, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Putative members of the Arabidopsis Nup107‐160 nuclear pore sub‐complex contribute to pathogen defense</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2012-06</date><risdate>2012</risdate><volume>70</volume><issue>5</issue><spage>796</spage><epage>808</epage><pages>796-808</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary In eukaryotic cells, transduction of external stimuli into the nucleus to induce transcription and export of mRNAs for translation in the cytoplasm is mediated by nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups). We previously reported that Arabidopsis MOS3, encoding the homolog of vertebrate Nup96, is required for plant immunity and constitutive resistance mediated by the de‐regulated Toll interleukin 1 receptor/nucleotide‐binding/leucine‐rich repeat (TNL)‐type R gene snc1. In vertebrates, Nup96 is a component of the conserved Nup107‐160 nuclear pore sub‐complex, and implicated in immunity‐related mRNA export. Here, we used a reverse genetics approach to examine the requirement for additional subunits of the predicted Arabidopsis Nup107‐160 complex in plant immunity. We show that, among eight putative complex members, beside MOS3, only plants with defects in Nup160 or Seh1 are impaired in basal resistance. Constitutive resistance in the snc1 mutant and immunity mediated by TNL‐type R genes also depend on functional Nup160 and have a partial requirement for Seh1. Conversely, resistance conferred by coiled coil‐type immune receptors operates largely independently of both genes, demonstrating specific contributions to plant defense signaling. Our functional analysis further revealed that defects in nup160 and seh1 result in nuclear accumulation of poly(A) mRNA, and, in the case of nup160, considerable depletion of EDS1, a key positive regulator of basal and TNL‐triggered resistance. These findings suggest that Nup160 is required for nuclear mRNA export and full expression of EDS1‐conditioned resistance pathways in Arabidopsis.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22288649</pmid><doi>10.1111/j.1365-313X.2012.04928.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2012-06, Vol.70 (5), p.796-808
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_1024477092
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals
subjects Active Transport, Cell Nucleus
Arabidopsis
Arabidopsis - genetics
Arabidopsis - immunology
Arabidopsis - microbiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biological and medical sciences
Cell Nucleus - genetics
Cell Nucleus - metabolism
Cytoplasm - genetics
Cytoplasm - metabolism
Disease Resistance
DNA, Plant - genetics
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation, Plant
Genes, Plant
mRNA export
Mutation
Nuclear Pore - genetics
Nuclear Pore - metabolism
Nuclear Pore Complex Proteins - genetics
Nuclear Pore Complex Proteins - metabolism
nucleocytoplasmic trafficking
nucleoporins
Nup107‐160 complex
Oomycetes - immunology
Oomycetes - pathogenicity
Plant biology
Plant Diseases - immunology
Plant Diseases - microbiology
Plant Immunity
Plant pathology
Plant physiology and development
Plant resistance
Plants, Genetically Modified - genetics
Plants, Genetically Modified - immunology
Plants, Genetically Modified - metabolism
Poly A - genetics
Poly A - metabolism
Proteins
Reverse Genetics - methods
RNA Transport
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA, Plant - genetics
RNA, Plant - metabolism
Signal Transduction
title Putative members of the Arabidopsis Nup107‐160 nuclear pore sub‐complex contribute to pathogen defense
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Putative%20members%20of%20the%20Arabidopsis%20Nup107%E2%80%90160%20nuclear%20pore%20sub%E2%80%90complex%20contribute%20to%20pathogen%20defense&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Wiermer,%20Marcel&rft.date=2012-06&rft.volume=70&rft.issue=5&rft.spage=796&rft.epage=808&rft.pages=796-808&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313X.2012.04928.x&rft_dat=%3Cproquest_cross%3E2666415971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015084625&rft_id=info:pmid/22288649&rfr_iscdi=true