Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles
Bionanocomposites based on ceramic nanoparticles and a biodegradable porous matrix represent a promising strategy for bone repair applications. The preparation and bioactive properties of bionanocomposites based on hydroxyapatite (nHA) and bioactive glass (nBG) nanoparticles were presented. nHA and...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2012-08, Vol.100B (6), p.1672-1682 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1682 |
---|---|
container_issue | 6 |
container_start_page | 1672 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 100B |
creator | Valenzuela, Francisco Covarrubias, Cristian Martínez, Constanza Smith, Patricio Díaz-Dosque, Mario Yazdani-Pedram, Mehrdad |
description | Bionanocomposites based on ceramic nanoparticles and a biodegradable porous matrix represent a promising strategy for bone repair applications. The preparation and bioactive properties of bionanocomposites based on hydroxyapatite (nHA) and bioactive glass (nBG) nanoparticles were presented. nHA and nBG were synthesized with nanometric particle size using sol–gel/precipitation methods. Composite scaffolds were prepared by incorporating nHA and nBG into a porous alginate (ALG) matrix at different particle loads. The ability of the bionanocomposites to induce the crystallization of the apatite phase from simulated body fluid (SBF) was systematically evaluated using X‐ray diffraction (XRD), scanning electron microscopy with energy dispersive X‐ray analysis, and Fourier transform infrared spectroscopy. Both nHA/ALG and nBG/ALG composites were shown to notably accelerate the process of crystallization and growth of the apatite phase on the scaffold surfaces. For short immersion times in SBF, nBG (25%)‐based nanocomposites induced a higher degree of apatite crystallization than nHA (25%)‐based nanocomposites, probably due to the more reactive nature of the BG particles. Through a reinforcement effect, the nanoparticles also improve the mechanical properties and stability in SBF of the polymer scaffold matrix. In addition, in vitro biocompatibility tests demonstrated that osteoblast cells are viable and adhere well on the surface of the bionanocomposites. These results indicate that nHA‐ and nBG‐based bionanocomposites present potential properties for bone repair applications, particularly oriented to accelerate the bone mineralization process. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 1672–1682, 2012. |
doi_str_mv | 10.1002/jbm.b.32736 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1024098567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024098567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3996-4e85d2ebb92c0b72fa9b08f1efe97ab35c764b96a0e00e7dc42b1b27d6973b1f3</originalsourceid><addsrcrecordid>eNp9kE1v1DAURS0EoqWwYo-yQUJCmfojjuMlVNChKtBFERIb69l5AZckDnamdH4A_7ueznSQWLCyF-feq3cIec7oglHKj6_ssLALwZWoH5BDJiUvK92wh_u_EgfkSUpXGa6pFI_JAeeKKk71IflzEXGCCLMPYwFjW1gfwM3-Gosphgnj7DEVoSvGcI19YcOI5Sbh44YcYQwuDFNIfs6YhYRtkYt-rNsYbtYw5d4Z_-n93kNKxSaah2fvekxPyaMO-oTPdu8R-fL-3eXJsjz_fPrh5M156YTWdVlhI1uO1mruqFW8A21p0zHsUCuwQjpVV1bXQJFSVK2ruGWWq7bODizrxBF5te3Nt_1aYZrN4JPDvocRwyoZRnlFdSNrldHXW9TFkFLEzkzRDxDXGTIb7yZ7N9bcec_0i13xyg7Y7tl70Rl4uQMgOei7CKPz6S9Xi4o1UmSObbnfvsf1_zbN2duP9-PlNuPTjDf7DMSfJh-ipPn66dQsvy2znMsLI8Ut_MSt4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024098567</pqid></control><display><type>article</type><title>Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Valenzuela, Francisco ; Covarrubias, Cristian ; Martínez, Constanza ; Smith, Patricio ; Díaz-Dosque, Mario ; Yazdani-Pedram, Mehrdad</creator><creatorcontrib>Valenzuela, Francisco ; Covarrubias, Cristian ; Martínez, Constanza ; Smith, Patricio ; Díaz-Dosque, Mario ; Yazdani-Pedram, Mehrdad</creatorcontrib><description>Bionanocomposites based on ceramic nanoparticles and a biodegradable porous matrix represent a promising strategy for bone repair applications. The preparation and bioactive properties of bionanocomposites based on hydroxyapatite (nHA) and bioactive glass (nBG) nanoparticles were presented. nHA and nBG were synthesized with nanometric particle size using sol–gel/precipitation methods. Composite scaffolds were prepared by incorporating nHA and nBG into a porous alginate (ALG) matrix at different particle loads. The ability of the bionanocomposites to induce the crystallization of the apatite phase from simulated body fluid (SBF) was systematically evaluated using X‐ray diffraction (XRD), scanning electron microscopy with energy dispersive X‐ray analysis, and Fourier transform infrared spectroscopy. Both nHA/ALG and nBG/ALG composites were shown to notably accelerate the process of crystallization and growth of the apatite phase on the scaffold surfaces. For short immersion times in SBF, nBG (25%)‐based nanocomposites induced a higher degree of apatite crystallization than nHA (25%)‐based nanocomposites, probably due to the more reactive nature of the BG particles. Through a reinforcement effect, the nanoparticles also improve the mechanical properties and stability in SBF of the polymer scaffold matrix. In addition, in vitro biocompatibility tests demonstrated that osteoblast cells are viable and adhere well on the surface of the bionanocomposites. These results indicate that nHA‐ and nBG‐based bionanocomposites present potential properties for bone repair applications, particularly oriented to accelerate the bone mineralization process. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 1672–1682, 2012.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.32736</identifier><identifier>PMID: 22707209</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Alginates - chemistry ; Alginates - pharmacology ; bioactive glass ; bioactive nanoparticles ; Biological and medical sciences ; bionanocomposites ; bone regeneration ; Bone Regeneration - drug effects ; Bone Substitutes - chemistry ; Bone Substitutes - pharmacology ; Calcification, Physiologic - drug effects ; Cell Line, Tumor ; Durapatite - chemistry ; Durapatite - pharmacology ; Glass ; Glucuronic Acid - chemistry ; Glucuronic Acid - pharmacology ; Hexuronic Acids - chemistry ; Hexuronic Acids - pharmacology ; Humans ; hydroxyapatite ; Materials Testing ; Medical sciences ; Nanocomposites ; Nanoparticles ; Orthopedic surgery ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; X-Ray Diffraction</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2012-08, Vol.100B (6), p.1672-1682</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3996-4e85d2ebb92c0b72fa9b08f1efe97ab35c764b96a0e00e7dc42b1b27d6973b1f3</citedby><cites>FETCH-LOGICAL-c3996-4e85d2ebb92c0b72fa9b08f1efe97ab35c764b96a0e00e7dc42b1b27d6973b1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.32736$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.32736$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26341853$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22707209$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valenzuela, Francisco</creatorcontrib><creatorcontrib>Covarrubias, Cristian</creatorcontrib><creatorcontrib>Martínez, Constanza</creatorcontrib><creatorcontrib>Smith, Patricio</creatorcontrib><creatorcontrib>Díaz-Dosque, Mario</creatorcontrib><creatorcontrib>Yazdani-Pedram, Mehrdad</creatorcontrib><title>Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Bionanocomposites based on ceramic nanoparticles and a biodegradable porous matrix represent a promising strategy for bone repair applications. The preparation and bioactive properties of bionanocomposites based on hydroxyapatite (nHA) and bioactive glass (nBG) nanoparticles were presented. nHA and nBG were synthesized with nanometric particle size using sol–gel/precipitation methods. Composite scaffolds were prepared by incorporating nHA and nBG into a porous alginate (ALG) matrix at different particle loads. The ability of the bionanocomposites to induce the crystallization of the apatite phase from simulated body fluid (SBF) was systematically evaluated using X‐ray diffraction (XRD), scanning electron microscopy with energy dispersive X‐ray analysis, and Fourier transform infrared spectroscopy. Both nHA/ALG and nBG/ALG composites were shown to notably accelerate the process of crystallization and growth of the apatite phase on the scaffold surfaces. For short immersion times in SBF, nBG (25%)‐based nanocomposites induced a higher degree of apatite crystallization than nHA (25%)‐based nanocomposites, probably due to the more reactive nature of the BG particles. Through a reinforcement effect, the nanoparticles also improve the mechanical properties and stability in SBF of the polymer scaffold matrix. In addition, in vitro biocompatibility tests demonstrated that osteoblast cells are viable and adhere well on the surface of the bionanocomposites. These results indicate that nHA‐ and nBG‐based bionanocomposites present potential properties for bone repair applications, particularly oriented to accelerate the bone mineralization process. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 1672–1682, 2012.</description><subject>Alginates - chemistry</subject><subject>Alginates - pharmacology</subject><subject>bioactive glass</subject><subject>bioactive nanoparticles</subject><subject>Biological and medical sciences</subject><subject>bionanocomposites</subject><subject>bone regeneration</subject><subject>Bone Regeneration - drug effects</subject><subject>Bone Substitutes - chemistry</subject><subject>Bone Substitutes - pharmacology</subject><subject>Calcification, Physiologic - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - pharmacology</subject><subject>Glass</subject><subject>Glucuronic Acid - chemistry</subject><subject>Glucuronic Acid - pharmacology</subject><subject>Hexuronic Acids - chemistry</subject><subject>Hexuronic Acids - pharmacology</subject><subject>Humans</subject><subject>hydroxyapatite</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Orthopedic surgery</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>X-Ray Diffraction</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAURS0EoqWwYo-yQUJCmfojjuMlVNChKtBFERIb69l5AZckDnamdH4A_7ueznSQWLCyF-feq3cIec7oglHKj6_ssLALwZWoH5BDJiUvK92wh_u_EgfkSUpXGa6pFI_JAeeKKk71IflzEXGCCLMPYwFjW1gfwM3-Gosphgnj7DEVoSvGcI19YcOI5Sbh44YcYQwuDFNIfs6YhYRtkYt-rNsYbtYw5d4Z_-n93kNKxSaah2fvekxPyaMO-oTPdu8R-fL-3eXJsjz_fPrh5M156YTWdVlhI1uO1mruqFW8A21p0zHsUCuwQjpVV1bXQJFSVK2ruGWWq7bODizrxBF5te3Nt_1aYZrN4JPDvocRwyoZRnlFdSNrldHXW9TFkFLEzkzRDxDXGTIb7yZ7N9bcec_0i13xyg7Y7tl70Rl4uQMgOei7CKPz6S9Xi4o1UmSObbnfvsf1_zbN2duP9-PlNuPTjDf7DMSfJh-ipPn66dQsvy2znMsLI8Ut_MSt4w</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Valenzuela, Francisco</creator><creator>Covarrubias, Cristian</creator><creator>Martínez, Constanza</creator><creator>Smith, Patricio</creator><creator>Díaz-Dosque, Mario</creator><creator>Yazdani-Pedram, Mehrdad</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201208</creationdate><title>Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles</title><author>Valenzuela, Francisco ; Covarrubias, Cristian ; Martínez, Constanza ; Smith, Patricio ; Díaz-Dosque, Mario ; Yazdani-Pedram, Mehrdad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3996-4e85d2ebb92c0b72fa9b08f1efe97ab35c764b96a0e00e7dc42b1b27d6973b1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alginates - chemistry</topic><topic>Alginates - pharmacology</topic><topic>bioactive glass</topic><topic>bioactive nanoparticles</topic><topic>Biological and medical sciences</topic><topic>bionanocomposites</topic><topic>bone regeneration</topic><topic>Bone Regeneration - drug effects</topic><topic>Bone Substitutes - chemistry</topic><topic>Bone Substitutes - pharmacology</topic><topic>Calcification, Physiologic - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - pharmacology</topic><topic>Glass</topic><topic>Glucuronic Acid - chemistry</topic><topic>Glucuronic Acid - pharmacology</topic><topic>Hexuronic Acids - chemistry</topic><topic>Hexuronic Acids - pharmacology</topic><topic>Humans</topic><topic>hydroxyapatite</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Orthopedic surgery</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valenzuela, Francisco</creatorcontrib><creatorcontrib>Covarrubias, Cristian</creatorcontrib><creatorcontrib>Martínez, Constanza</creatorcontrib><creatorcontrib>Smith, Patricio</creatorcontrib><creatorcontrib>Díaz-Dosque, Mario</creatorcontrib><creatorcontrib>Yazdani-Pedram, Mehrdad</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valenzuela, Francisco</au><au>Covarrubias, Cristian</au><au>Martínez, Constanza</au><au>Smith, Patricio</au><au>Díaz-Dosque, Mario</au><au>Yazdani-Pedram, Mehrdad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2012-08</date><risdate>2012</risdate><volume>100B</volume><issue>6</issue><spage>1672</spage><epage>1682</epage><pages>1672-1682</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Bionanocomposites based on ceramic nanoparticles and a biodegradable porous matrix represent a promising strategy for bone repair applications. The preparation and bioactive properties of bionanocomposites based on hydroxyapatite (nHA) and bioactive glass (nBG) nanoparticles were presented. nHA and nBG were synthesized with nanometric particle size using sol–gel/precipitation methods. Composite scaffolds were prepared by incorporating nHA and nBG into a porous alginate (ALG) matrix at different particle loads. The ability of the bionanocomposites to induce the crystallization of the apatite phase from simulated body fluid (SBF) was systematically evaluated using X‐ray diffraction (XRD), scanning electron microscopy with energy dispersive X‐ray analysis, and Fourier transform infrared spectroscopy. Both nHA/ALG and nBG/ALG composites were shown to notably accelerate the process of crystallization and growth of the apatite phase on the scaffold surfaces. For short immersion times in SBF, nBG (25%)‐based nanocomposites induced a higher degree of apatite crystallization than nHA (25%)‐based nanocomposites, probably due to the more reactive nature of the BG particles. Through a reinforcement effect, the nanoparticles also improve the mechanical properties and stability in SBF of the polymer scaffold matrix. In addition, in vitro biocompatibility tests demonstrated that osteoblast cells are viable and adhere well on the surface of the bionanocomposites. These results indicate that nHA‐ and nBG‐based bionanocomposites present potential properties for bone repair applications, particularly oriented to accelerate the bone mineralization process. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 1672–1682, 2012.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22707209</pmid><doi>10.1002/jbm.b.32736</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2012-08, Vol.100B (6), p.1672-1682 |
issn | 1552-4973 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_1024098567 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Alginates - chemistry Alginates - pharmacology bioactive glass bioactive nanoparticles Biological and medical sciences bionanocomposites bone regeneration Bone Regeneration - drug effects Bone Substitutes - chemistry Bone Substitutes - pharmacology Calcification, Physiologic - drug effects Cell Line, Tumor Durapatite - chemistry Durapatite - pharmacology Glass Glucuronic Acid - chemistry Glucuronic Acid - pharmacology Hexuronic Acids - chemistry Hexuronic Acids - pharmacology Humans hydroxyapatite Materials Testing Medical sciences Nanocomposites Nanoparticles Orthopedic surgery Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments X-Ray Diffraction |
title | Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20bioactive%20properties%20of%20novel%20bone-repair%20bionanocomposites%20based%20on%20hydroxyapatite%20and%20bioactive%20glass%20nanoparticles&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Valenzuela,%20Francisco&rft.date=2012-08&rft.volume=100B&rft.issue=6&rft.spage=1672&rft.epage=1682&rft.pages=1672-1682&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.32736&rft_dat=%3Cproquest_cross%3E1024098567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024098567&rft_id=info:pmid/22707209&rfr_iscdi=true |