Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles

Bionanocomposites based on ceramic nanoparticles and a biodegradable porous matrix represent a promising strategy for bone repair applications. The preparation and bioactive properties of bionanocomposites based on hydroxyapatite (nHA) and bioactive glass (nBG) nanoparticles were presented. nHA and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2012-08, Vol.100B (6), p.1672-1682
Hauptverfasser: Valenzuela, Francisco, Covarrubias, Cristian, Martínez, Constanza, Smith, Patricio, Díaz-Dosque, Mario, Yazdani-Pedram, Mehrdad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1682
container_issue 6
container_start_page 1672
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 100B
creator Valenzuela, Francisco
Covarrubias, Cristian
Martínez, Constanza
Smith, Patricio
Díaz-Dosque, Mario
Yazdani-Pedram, Mehrdad
description Bionanocomposites based on ceramic nanoparticles and a biodegradable porous matrix represent a promising strategy for bone repair applications. The preparation and bioactive properties of bionanocomposites based on hydroxyapatite (nHA) and bioactive glass (nBG) nanoparticles were presented. nHA and nBG were synthesized with nanometric particle size using sol–gel/precipitation methods. Composite scaffolds were prepared by incorporating nHA and nBG into a porous alginate (ALG) matrix at different particle loads. The ability of the bionanocomposites to induce the crystallization of the apatite phase from simulated body fluid (SBF) was systematically evaluated using X‐ray diffraction (XRD), scanning electron microscopy with energy dispersive X‐ray analysis, and Fourier transform infrared spectroscopy. Both nHA/ALG and nBG/ALG composites were shown to notably accelerate the process of crystallization and growth of the apatite phase on the scaffold surfaces. For short immersion times in SBF, nBG (25%)‐based nanocomposites induced a higher degree of apatite crystallization than nHA (25%)‐based nanocomposites, probably due to the more reactive nature of the BG particles. Through a reinforcement effect, the nanoparticles also improve the mechanical properties and stability in SBF of the polymer scaffold matrix. In addition, in vitro biocompatibility tests demonstrated that osteoblast cells are viable and adhere well on the surface of the bionanocomposites. These results indicate that nHA‐ and nBG‐based bionanocomposites present potential properties for bone repair applications, particularly oriented to accelerate the bone mineralization process. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 1672–1682, 2012.
doi_str_mv 10.1002/jbm.b.32736
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1024098567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024098567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3996-4e85d2ebb92c0b72fa9b08f1efe97ab35c764b96a0e00e7dc42b1b27d6973b1f3</originalsourceid><addsrcrecordid>eNp9kE1v1DAURS0EoqWwYo-yQUJCmfojjuMlVNChKtBFERIb69l5AZckDnamdH4A_7ueznSQWLCyF-feq3cIec7oglHKj6_ssLALwZWoH5BDJiUvK92wh_u_EgfkSUpXGa6pFI_JAeeKKk71IflzEXGCCLMPYwFjW1gfwM3-Gosphgnj7DEVoSvGcI19YcOI5Sbh44YcYQwuDFNIfs6YhYRtkYt-rNsYbtYw5d4Z_-n93kNKxSaah2fvekxPyaMO-oTPdu8R-fL-3eXJsjz_fPrh5M156YTWdVlhI1uO1mruqFW8A21p0zHsUCuwQjpVV1bXQJFSVK2ruGWWq7bODizrxBF5te3Nt_1aYZrN4JPDvocRwyoZRnlFdSNrldHXW9TFkFLEzkzRDxDXGTIb7yZ7N9bcec_0i13xyg7Y7tl70Rl4uQMgOei7CKPz6S9Xi4o1UmSObbnfvsf1_zbN2duP9-PlNuPTjDf7DMSfJh-ipPn66dQsvy2znMsLI8Ut_MSt4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024098567</pqid></control><display><type>article</type><title>Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Valenzuela, Francisco ; Covarrubias, Cristian ; Martínez, Constanza ; Smith, Patricio ; Díaz-Dosque, Mario ; Yazdani-Pedram, Mehrdad</creator><creatorcontrib>Valenzuela, Francisco ; Covarrubias, Cristian ; Martínez, Constanza ; Smith, Patricio ; Díaz-Dosque, Mario ; Yazdani-Pedram, Mehrdad</creatorcontrib><description>Bionanocomposites based on ceramic nanoparticles and a biodegradable porous matrix represent a promising strategy for bone repair applications. The preparation and bioactive properties of bionanocomposites based on hydroxyapatite (nHA) and bioactive glass (nBG) nanoparticles were presented. nHA and nBG were synthesized with nanometric particle size using sol–gel/precipitation methods. Composite scaffolds were prepared by incorporating nHA and nBG into a porous alginate (ALG) matrix at different particle loads. The ability of the bionanocomposites to induce the crystallization of the apatite phase from simulated body fluid (SBF) was systematically evaluated using X‐ray diffraction (XRD), scanning electron microscopy with energy dispersive X‐ray analysis, and Fourier transform infrared spectroscopy. Both nHA/ALG and nBG/ALG composites were shown to notably accelerate the process of crystallization and growth of the apatite phase on the scaffold surfaces. For short immersion times in SBF, nBG (25%)‐based nanocomposites induced a higher degree of apatite crystallization than nHA (25%)‐based nanocomposites, probably due to the more reactive nature of the BG particles. Through a reinforcement effect, the nanoparticles also improve the mechanical properties and stability in SBF of the polymer scaffold matrix. In addition, in vitro biocompatibility tests demonstrated that osteoblast cells are viable and adhere well on the surface of the bionanocomposites. These results indicate that nHA‐ and nBG‐based bionanocomposites present potential properties for bone repair applications, particularly oriented to accelerate the bone mineralization process. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 1672–1682, 2012.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.32736</identifier><identifier>PMID: 22707209</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Alginates - chemistry ; Alginates - pharmacology ; bioactive glass ; bioactive nanoparticles ; Biological and medical sciences ; bionanocomposites ; bone regeneration ; Bone Regeneration - drug effects ; Bone Substitutes - chemistry ; Bone Substitutes - pharmacology ; Calcification, Physiologic - drug effects ; Cell Line, Tumor ; Durapatite - chemistry ; Durapatite - pharmacology ; Glass ; Glucuronic Acid - chemistry ; Glucuronic Acid - pharmacology ; Hexuronic Acids - chemistry ; Hexuronic Acids - pharmacology ; Humans ; hydroxyapatite ; Materials Testing ; Medical sciences ; Nanocomposites ; Nanoparticles ; Orthopedic surgery ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; X-Ray Diffraction</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2012-08, Vol.100B (6), p.1672-1682</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3996-4e85d2ebb92c0b72fa9b08f1efe97ab35c764b96a0e00e7dc42b1b27d6973b1f3</citedby><cites>FETCH-LOGICAL-c3996-4e85d2ebb92c0b72fa9b08f1efe97ab35c764b96a0e00e7dc42b1b27d6973b1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.32736$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.32736$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26341853$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22707209$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valenzuela, Francisco</creatorcontrib><creatorcontrib>Covarrubias, Cristian</creatorcontrib><creatorcontrib>Martínez, Constanza</creatorcontrib><creatorcontrib>Smith, Patricio</creatorcontrib><creatorcontrib>Díaz-Dosque, Mario</creatorcontrib><creatorcontrib>Yazdani-Pedram, Mehrdad</creatorcontrib><title>Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Bionanocomposites based on ceramic nanoparticles and a biodegradable porous matrix represent a promising strategy for bone repair applications. The preparation and bioactive properties of bionanocomposites based on hydroxyapatite (nHA) and bioactive glass (nBG) nanoparticles were presented. nHA and nBG were synthesized with nanometric particle size using sol–gel/precipitation methods. Composite scaffolds were prepared by incorporating nHA and nBG into a porous alginate (ALG) matrix at different particle loads. The ability of the bionanocomposites to induce the crystallization of the apatite phase from simulated body fluid (SBF) was systematically evaluated using X‐ray diffraction (XRD), scanning electron microscopy with energy dispersive X‐ray analysis, and Fourier transform infrared spectroscopy. Both nHA/ALG and nBG/ALG composites were shown to notably accelerate the process of crystallization and growth of the apatite phase on the scaffold surfaces. For short immersion times in SBF, nBG (25%)‐based nanocomposites induced a higher degree of apatite crystallization than nHA (25%)‐based nanocomposites, probably due to the more reactive nature of the BG particles. Through a reinforcement effect, the nanoparticles also improve the mechanical properties and stability in SBF of the polymer scaffold matrix. In addition, in vitro biocompatibility tests demonstrated that osteoblast cells are viable and adhere well on the surface of the bionanocomposites. These results indicate that nHA‐ and nBG‐based bionanocomposites present potential properties for bone repair applications, particularly oriented to accelerate the bone mineralization process. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 1672–1682, 2012.</description><subject>Alginates - chemistry</subject><subject>Alginates - pharmacology</subject><subject>bioactive glass</subject><subject>bioactive nanoparticles</subject><subject>Biological and medical sciences</subject><subject>bionanocomposites</subject><subject>bone regeneration</subject><subject>Bone Regeneration - drug effects</subject><subject>Bone Substitutes - chemistry</subject><subject>Bone Substitutes - pharmacology</subject><subject>Calcification, Physiologic - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - pharmacology</subject><subject>Glass</subject><subject>Glucuronic Acid - chemistry</subject><subject>Glucuronic Acid - pharmacology</subject><subject>Hexuronic Acids - chemistry</subject><subject>Hexuronic Acids - pharmacology</subject><subject>Humans</subject><subject>hydroxyapatite</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Orthopedic surgery</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>X-Ray Diffraction</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAURS0EoqWwYo-yQUJCmfojjuMlVNChKtBFERIb69l5AZckDnamdH4A_7ueznSQWLCyF-feq3cIec7oglHKj6_ssLALwZWoH5BDJiUvK92wh_u_EgfkSUpXGa6pFI_JAeeKKk71IflzEXGCCLMPYwFjW1gfwM3-Gosphgnj7DEVoSvGcI19YcOI5Sbh44YcYQwuDFNIfs6YhYRtkYt-rNsYbtYw5d4Z_-n93kNKxSaah2fvekxPyaMO-oTPdu8R-fL-3eXJsjz_fPrh5M156YTWdVlhI1uO1mruqFW8A21p0zHsUCuwQjpVV1bXQJFSVK2ruGWWq7bODizrxBF5te3Nt_1aYZrN4JPDvocRwyoZRnlFdSNrldHXW9TFkFLEzkzRDxDXGTIb7yZ7N9bcec_0i13xyg7Y7tl70Rl4uQMgOei7CKPz6S9Xi4o1UmSObbnfvsf1_zbN2duP9-PlNuPTjDf7DMSfJh-ipPn66dQsvy2znMsLI8Ut_MSt4w</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Valenzuela, Francisco</creator><creator>Covarrubias, Cristian</creator><creator>Martínez, Constanza</creator><creator>Smith, Patricio</creator><creator>Díaz-Dosque, Mario</creator><creator>Yazdani-Pedram, Mehrdad</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201208</creationdate><title>Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles</title><author>Valenzuela, Francisco ; Covarrubias, Cristian ; Martínez, Constanza ; Smith, Patricio ; Díaz-Dosque, Mario ; Yazdani-Pedram, Mehrdad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3996-4e85d2ebb92c0b72fa9b08f1efe97ab35c764b96a0e00e7dc42b1b27d6973b1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alginates - chemistry</topic><topic>Alginates - pharmacology</topic><topic>bioactive glass</topic><topic>bioactive nanoparticles</topic><topic>Biological and medical sciences</topic><topic>bionanocomposites</topic><topic>bone regeneration</topic><topic>Bone Regeneration - drug effects</topic><topic>Bone Substitutes - chemistry</topic><topic>Bone Substitutes - pharmacology</topic><topic>Calcification, Physiologic - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - pharmacology</topic><topic>Glass</topic><topic>Glucuronic Acid - chemistry</topic><topic>Glucuronic Acid - pharmacology</topic><topic>Hexuronic Acids - chemistry</topic><topic>Hexuronic Acids - pharmacology</topic><topic>Humans</topic><topic>hydroxyapatite</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Orthopedic surgery</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valenzuela, Francisco</creatorcontrib><creatorcontrib>Covarrubias, Cristian</creatorcontrib><creatorcontrib>Martínez, Constanza</creatorcontrib><creatorcontrib>Smith, Patricio</creatorcontrib><creatorcontrib>Díaz-Dosque, Mario</creatorcontrib><creatorcontrib>Yazdani-Pedram, Mehrdad</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valenzuela, Francisco</au><au>Covarrubias, Cristian</au><au>Martínez, Constanza</au><au>Smith, Patricio</au><au>Díaz-Dosque, Mario</au><au>Yazdani-Pedram, Mehrdad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2012-08</date><risdate>2012</risdate><volume>100B</volume><issue>6</issue><spage>1672</spage><epage>1682</epage><pages>1672-1682</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Bionanocomposites based on ceramic nanoparticles and a biodegradable porous matrix represent a promising strategy for bone repair applications. The preparation and bioactive properties of bionanocomposites based on hydroxyapatite (nHA) and bioactive glass (nBG) nanoparticles were presented. nHA and nBG were synthesized with nanometric particle size using sol–gel/precipitation methods. Composite scaffolds were prepared by incorporating nHA and nBG into a porous alginate (ALG) matrix at different particle loads. The ability of the bionanocomposites to induce the crystallization of the apatite phase from simulated body fluid (SBF) was systematically evaluated using X‐ray diffraction (XRD), scanning electron microscopy with energy dispersive X‐ray analysis, and Fourier transform infrared spectroscopy. Both nHA/ALG and nBG/ALG composites were shown to notably accelerate the process of crystallization and growth of the apatite phase on the scaffold surfaces. For short immersion times in SBF, nBG (25%)‐based nanocomposites induced a higher degree of apatite crystallization than nHA (25%)‐based nanocomposites, probably due to the more reactive nature of the BG particles. Through a reinforcement effect, the nanoparticles also improve the mechanical properties and stability in SBF of the polymer scaffold matrix. In addition, in vitro biocompatibility tests demonstrated that osteoblast cells are viable and adhere well on the surface of the bionanocomposites. These results indicate that nHA‐ and nBG‐based bionanocomposites present potential properties for bone repair applications, particularly oriented to accelerate the bone mineralization process. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 1672–1682, 2012.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22707209</pmid><doi>10.1002/jbm.b.32736</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2012-08, Vol.100B (6), p.1672-1682
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_1024098567
source MEDLINE; Access via Wiley Online Library
subjects Alginates - chemistry
Alginates - pharmacology
bioactive glass
bioactive nanoparticles
Biological and medical sciences
bionanocomposites
bone regeneration
Bone Regeneration - drug effects
Bone Substitutes - chemistry
Bone Substitutes - pharmacology
Calcification, Physiologic - drug effects
Cell Line, Tumor
Durapatite - chemistry
Durapatite - pharmacology
Glass
Glucuronic Acid - chemistry
Glucuronic Acid - pharmacology
Hexuronic Acids - chemistry
Hexuronic Acids - pharmacology
Humans
hydroxyapatite
Materials Testing
Medical sciences
Nanocomposites
Nanoparticles
Orthopedic surgery
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
X-Ray Diffraction
title Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20bioactive%20properties%20of%20novel%20bone-repair%20bionanocomposites%20based%20on%20hydroxyapatite%20and%20bioactive%20glass%20nanoparticles&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Valenzuela,%20Francisco&rft.date=2012-08&rft.volume=100B&rft.issue=6&rft.spage=1672&rft.epage=1682&rft.pages=1672-1682&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.32736&rft_dat=%3Cproquest_cross%3E1024098567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024098567&rft_id=info:pmid/22707209&rfr_iscdi=true