Intraparticle Reduction of Arsenite (As(III)) by Nanoscale Zerovalent Iron (nZVI) Investigated with In Situ X-ray Absorption Spectroscopy

While a high efficiency of contaminant removal by nanoscale zerovalent iron (nZVI) has often been reported for several contaminants of great concern, including aqueous arsenic species, the transformations and translocation of contaminants at and within the nanoparticles are not clearly understood. B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environ. Sci. Tech 2012-07, Vol.46 (13), p.7018-7026
Hauptverfasser: Yan, Weile, Vasic, Relja, Frenkel, Anatoly I, Koel, Bruce E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7026
container_issue 13
container_start_page 7018
container_title Environ. Sci. Tech
container_volume 46
creator Yan, Weile
Vasic, Relja
Frenkel, Anatoly I
Koel, Bruce E
description While a high efficiency of contaminant removal by nanoscale zerovalent iron (nZVI) has often been reported for several contaminants of great concern, including aqueous arsenic species, the transformations and translocation of contaminants at and within the nanoparticles are not clearly understood. By analysis using in situ time-dependent X-ray absorption spectroscopy (XAS) of the arsenic core level for nZVI in anoxic As(III) solutions, we have observed that As(III) species underwent two stages of transformation upon adsorption at the nZVI surface. The first stage corresponds to breaking of As–O bonds at the particle surface, and the second stage involves further reduction and diffusion of arsenic across the thin oxide layer enclosing the nanoparticles, which results in arsenic forming an intermetallic phase with the Fe(0) core. Extended X-ray absorption fine-structure (EXAFS) data from experiments conducted at different iron/arsenic ratios indicate that the reduced arsenic species tend to be enriched at the surface of the Fe(0) core region and had limited mobility into the interior of the metal core within the experimental time frame (up to 22 h). Therefore, there was an accumulation of partially reduced arsenic at the Fe(0)/oxide interface when a relatively large arsenic content was present in the solid phase. These results illuminate the role of intraparticle diffusion and reduction in affecting the chemical state and spatial distribution of arsenic in nZVI materials.
doi_str_mv 10.1021/es2039695
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1023299042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1023299042</sourcerecordid><originalsourceid>FETCH-LOGICAL-a400t-9827d70b6eae1afa483d95f49542069fddde7a031ec3c9182d4f7473285889be3</originalsourceid><addsrcrecordid>eNpd0VFrFDEQB_AgFntWH_wCEhTh7mF1kmx2N49HsbpQWrAqpS9LNpu1W-6SbZJtuY_gt3bau7bSp4Twy8z8GULeMfjMgLMvNnIQqlDyBZkxySGTlWQvyQyAiUyJ4nyfvI7xCgC4gOoV2eecq0IAn5G_tUtBjzqkwaws_WG7yaTBO-p7ugzRuiFZOl_GeV3XiwVtN_REOx-NRnxhg7_Bi0u0Dvhl7i5-1wtauxsb0_BHJ9vR2yFd4gs9G9JEz7OgN3TZRh_G-yZnozUpYDk_bt6QvV6von27Ow_Ir6OvPw-_Z8en3-rD5XGmc4CUqYqXXQltYbVlutd5JTol-1zJnEOh-q7rbKlBMGuEUaziXd6XeSl4JatKtVYckA_buh6HbKLBgObSeOdwlIZBUQKUiOZbNAZ_PWGcZj1EY1cr7ayfIjouuFKQc6Qfn9ErPwWHEe6VxIpSolpslcG4Mdi-GcOw1mGD6M6x5nGJaN_vKk7t2naP8mFrCD7tgL7bRB-0M0N8cgWoCqR6ctrE_6d63vAfblmtyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023506755</pqid></control><display><type>article</type><title>Intraparticle Reduction of Arsenite (As(III)) by Nanoscale Zerovalent Iron (nZVI) Investigated with In Situ X-ray Absorption Spectroscopy</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yan, Weile ; Vasic, Relja ; Frenkel, Anatoly I ; Koel, Bruce E</creator><creatorcontrib>Yan, Weile ; Vasic, Relja ; Frenkel, Anatoly I ; Koel, Bruce E ; Energy Frontier Research Centers (EFRC) ; Catalysis Center for Energy Innovation (CCEI)</creatorcontrib><description>While a high efficiency of contaminant removal by nanoscale zerovalent iron (nZVI) has often been reported for several contaminants of great concern, including aqueous arsenic species, the transformations and translocation of contaminants at and within the nanoparticles are not clearly understood. By analysis using in situ time-dependent X-ray absorption spectroscopy (XAS) of the arsenic core level for nZVI in anoxic As(III) solutions, we have observed that As(III) species underwent two stages of transformation upon adsorption at the nZVI surface. The first stage corresponds to breaking of As–O bonds at the particle surface, and the second stage involves further reduction and diffusion of arsenic across the thin oxide layer enclosing the nanoparticles, which results in arsenic forming an intermetallic phase with the Fe(0) core. Extended X-ray absorption fine-structure (EXAFS) data from experiments conducted at different iron/arsenic ratios indicate that the reduced arsenic species tend to be enriched at the surface of the Fe(0) core region and had limited mobility into the interior of the metal core within the experimental time frame (up to 22 h). Therefore, there was an accumulation of partially reduced arsenic at the Fe(0)/oxide interface when a relatively large arsenic content was present in the solid phase. These results illuminate the role of intraparticle diffusion and reduction in affecting the chemical state and spatial distribution of arsenic in nZVI materials.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es2039695</identifier><identifier>PMID: 22296302</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Applied sciences ; Aqueous solutions ; Arsenic ; Arsenic content ; Arsenic removal ; Arsenites - chemistry ; Arsenites - isolation &amp; purification ; catalysis (homogeneous), catalysis (heterogeneous), biofuels (including algae and biomass), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) ; Diffusion ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Groundwaters ; Iron - chemistry ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Natural water pollution ; Oxidation-Reduction ; Pollution ; Pollution, environment geology ; Spectrum analysis ; Water Pollutants, Chemical - chemistry ; Water Pollutants, Chemical - isolation &amp; purification ; Water treatment and pollution ; X-Ray Absorption Spectroscopy</subject><ispartof>Environ. Sci. Tech, 2012-07, Vol.46 (13), p.7018-7026</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>Copyright American Chemical Society Jul 3, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a400t-9827d70b6eae1afa483d95f49542069fddde7a031ec3c9182d4f7473285889be3</citedby><cites>FETCH-LOGICAL-a400t-9827d70b6eae1afa483d95f49542069fddde7a031ec3c9182d4f7473285889be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es2039695$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es2039695$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26098059$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22296302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1067007$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Weile</creatorcontrib><creatorcontrib>Vasic, Relja</creatorcontrib><creatorcontrib>Frenkel, Anatoly I</creatorcontrib><creatorcontrib>Koel, Bruce E</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Catalysis Center for Energy Innovation (CCEI)</creatorcontrib><title>Intraparticle Reduction of Arsenite (As(III)) by Nanoscale Zerovalent Iron (nZVI) Investigated with In Situ X-ray Absorption Spectroscopy</title><title>Environ. Sci. Tech</title><addtitle>Environ. Sci. Technol</addtitle><description>While a high efficiency of contaminant removal by nanoscale zerovalent iron (nZVI) has often been reported for several contaminants of great concern, including aqueous arsenic species, the transformations and translocation of contaminants at and within the nanoparticles are not clearly understood. By analysis using in situ time-dependent X-ray absorption spectroscopy (XAS) of the arsenic core level for nZVI in anoxic As(III) solutions, we have observed that As(III) species underwent two stages of transformation upon adsorption at the nZVI surface. The first stage corresponds to breaking of As–O bonds at the particle surface, and the second stage involves further reduction and diffusion of arsenic across the thin oxide layer enclosing the nanoparticles, which results in arsenic forming an intermetallic phase with the Fe(0) core. Extended X-ray absorption fine-structure (EXAFS) data from experiments conducted at different iron/arsenic ratios indicate that the reduced arsenic species tend to be enriched at the surface of the Fe(0) core region and had limited mobility into the interior of the metal core within the experimental time frame (up to 22 h). Therefore, there was an accumulation of partially reduced arsenic at the Fe(0)/oxide interface when a relatively large arsenic content was present in the solid phase. These results illuminate the role of intraparticle diffusion and reduction in affecting the chemical state and spatial distribution of arsenic in nZVI materials.</description><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Aqueous solutions</subject><subject>Arsenic</subject><subject>Arsenic content</subject><subject>Arsenic removal</subject><subject>Arsenites - chemistry</subject><subject>Arsenites - isolation &amp; purification</subject><subject>catalysis (homogeneous), catalysis (heterogeneous), biofuels (including algae and biomass), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><subject>Diffusion</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Groundwaters</subject><subject>Iron - chemistry</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Natural water pollution</subject><subject>Oxidation-Reduction</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Spectrum analysis</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Pollutants, Chemical - isolation &amp; purification</subject><subject>Water treatment and pollution</subject><subject>X-Ray Absorption Spectroscopy</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0VFrFDEQB_AgFntWH_wCEhTh7mF1kmx2N49HsbpQWrAqpS9LNpu1W-6SbZJtuY_gt3bau7bSp4Twy8z8GULeMfjMgLMvNnIQqlDyBZkxySGTlWQvyQyAiUyJ4nyfvI7xCgC4gOoV2eecq0IAn5G_tUtBjzqkwaws_WG7yaTBO-p7ugzRuiFZOl_GeV3XiwVtN_REOx-NRnxhg7_Bi0u0Dvhl7i5-1wtauxsb0_BHJ9vR2yFd4gs9G9JEz7OgN3TZRh_G-yZnozUpYDk_bt6QvV6von27Ow_Ir6OvPw-_Z8en3-rD5XGmc4CUqYqXXQltYbVlutd5JTol-1zJnEOh-q7rbKlBMGuEUaziXd6XeSl4JatKtVYckA_buh6HbKLBgObSeOdwlIZBUQKUiOZbNAZ_PWGcZj1EY1cr7ayfIjouuFKQc6Qfn9ErPwWHEe6VxIpSolpslcG4Mdi-GcOw1mGD6M6x5nGJaN_vKk7t2naP8mFrCD7tgL7bRB-0M0N8cgWoCqR6ctrE_6d63vAfblmtyg</recordid><startdate>20120703</startdate><enddate>20120703</enddate><creator>Yan, Weile</creator><creator>Vasic, Relja</creator><creator>Frenkel, Anatoly I</creator><creator>Koel, Bruce E</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20120703</creationdate><title>Intraparticle Reduction of Arsenite (As(III)) by Nanoscale Zerovalent Iron (nZVI) Investigated with In Situ X-ray Absorption Spectroscopy</title><author>Yan, Weile ; Vasic, Relja ; Frenkel, Anatoly I ; Koel, Bruce E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a400t-9827d70b6eae1afa483d95f49542069fddde7a031ec3c9182d4f7473285889be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Aqueous solutions</topic><topic>Arsenic</topic><topic>Arsenic content</topic><topic>Arsenic removal</topic><topic>Arsenites - chemistry</topic><topic>Arsenites - isolation &amp; purification</topic><topic>catalysis (homogeneous), catalysis (heterogeneous), biofuels (including algae and biomass), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><topic>Diffusion</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Groundwaters</topic><topic>Iron - chemistry</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Natural water pollution</topic><topic>Oxidation-Reduction</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Spectrum analysis</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Pollutants, Chemical - isolation &amp; purification</topic><topic>Water treatment and pollution</topic><topic>X-Ray Absorption Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Weile</creatorcontrib><creatorcontrib>Vasic, Relja</creatorcontrib><creatorcontrib>Frenkel, Anatoly I</creatorcontrib><creatorcontrib>Koel, Bruce E</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Catalysis Center for Energy Innovation (CCEI)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Environ. Sci. Tech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Weile</au><au>Vasic, Relja</au><au>Frenkel, Anatoly I</au><au>Koel, Bruce E</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Catalysis Center for Energy Innovation (CCEI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intraparticle Reduction of Arsenite (As(III)) by Nanoscale Zerovalent Iron (nZVI) Investigated with In Situ X-ray Absorption Spectroscopy</atitle><jtitle>Environ. Sci. Tech</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2012-07-03</date><risdate>2012</risdate><volume>46</volume><issue>13</issue><spage>7018</spage><epage>7026</epage><pages>7018-7026</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>While a high efficiency of contaminant removal by nanoscale zerovalent iron (nZVI) has often been reported for several contaminants of great concern, including aqueous arsenic species, the transformations and translocation of contaminants at and within the nanoparticles are not clearly understood. By analysis using in situ time-dependent X-ray absorption spectroscopy (XAS) of the arsenic core level for nZVI in anoxic As(III) solutions, we have observed that As(III) species underwent two stages of transformation upon adsorption at the nZVI surface. The first stage corresponds to breaking of As–O bonds at the particle surface, and the second stage involves further reduction and diffusion of arsenic across the thin oxide layer enclosing the nanoparticles, which results in arsenic forming an intermetallic phase with the Fe(0) core. Extended X-ray absorption fine-structure (EXAFS) data from experiments conducted at different iron/arsenic ratios indicate that the reduced arsenic species tend to be enriched at the surface of the Fe(0) core region and had limited mobility into the interior of the metal core within the experimental time frame (up to 22 h). Therefore, there was an accumulation of partially reduced arsenic at the Fe(0)/oxide interface when a relatively large arsenic content was present in the solid phase. These results illuminate the role of intraparticle diffusion and reduction in affecting the chemical state and spatial distribution of arsenic in nZVI materials.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22296302</pmid><doi>10.1021/es2039695</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environ. Sci. Tech, 2012-07, Vol.46 (13), p.7018-7026
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1023299042
source MEDLINE; American Chemical Society Journals
subjects Adsorption
Applied sciences
Aqueous solutions
Arsenic
Arsenic content
Arsenic removal
Arsenites - chemistry
Arsenites - isolation & purification
catalysis (homogeneous), catalysis (heterogeneous), biofuels (including algae and biomass), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
Diffusion
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Groundwaters
Iron - chemistry
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Natural water pollution
Oxidation-Reduction
Pollution
Pollution, environment geology
Spectrum analysis
Water Pollutants, Chemical - chemistry
Water Pollutants, Chemical - isolation & purification
Water treatment and pollution
X-Ray Absorption Spectroscopy
title Intraparticle Reduction of Arsenite (As(III)) by Nanoscale Zerovalent Iron (nZVI) Investigated with In Situ X-ray Absorption Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intraparticle%20Reduction%20of%20Arsenite%20(As(III))%20by%20Nanoscale%20Zerovalent%20Iron%20(nZVI)%20Investigated%20with%20In%20Situ%20X-ray%20Absorption%20Spectroscopy&rft.jtitle=Environ.%20Sci.%20Tech&rft.au=Yan,%20Weile&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2012-07-03&rft.volume=46&rft.issue=13&rft.spage=7018&rft.epage=7026&rft.pages=7018-7026&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es2039695&rft_dat=%3Cproquest_osti_%3E1023299042%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023506755&rft_id=info:pmid/22296302&rfr_iscdi=true