Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy

Lignocellulose was converted into reducing sugars by using saccharification enzymes from cocultivated Trichoderma reesei and Aspergillus niger and reducing sugars as nutrients for Zymomonas mobilis to produce bioethanol in an immobilization system. After 96h of cultivation, cocultivated T. reesei an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bioscience and bioengineering 2012-08, Vol.114 (2), p.198-203
Hauptverfasser: Liu, Yu-Kuo, Yang, Chih-An, Chen, Wei-Chuan, Wei, Yu-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue 2
container_start_page 198
container_title Journal of bioscience and bioengineering
container_volume 114
creator Liu, Yu-Kuo
Yang, Chih-An
Chen, Wei-Chuan
Wei, Yu-Hong
description Lignocellulose was converted into reducing sugars by using saccharification enzymes from cocultivated Trichoderma reesei and Aspergillus niger and reducing sugars as nutrients for Zymomonas mobilis to produce bioethanol in an immobilization system. After 96h of cultivation, cocultivated T. reesei and A. niger had enzymatical synergistic effects that enabled a reducing sugar production of 1.29g/L and a cellulose conversion rate of 23.27%. An 18% total inoculum concentration and a 1/1 inoculation ratio of T. reesei to A. niger obtained a reducing sugar production rate and a cellulose conversion rate of 2.57g/L and 46.27%, respectively. The co-immobilization cultivation results showed that using polyurethane as a carrier optimized total saccharification enzyme activity at an inoculum ratio of 1/1 and a total inoculum concentration of 6.5×106spores/mL. Based on the experimental results, the bioreactor design was further modified to enhance bioethanol production. The three strains (A. niger, T. reesei and Z. mobilis) were cocultivated with a co-immobilization cultivation system. The experimental results showed that, after 24h cultivation, bioethanol production reached 0.56g/L, and reducing sugar conversion rate reached 11.2% when using carboxymethylcellulose (CMC) substrates. The experimental results confirmed that the modified bioreactor enhances bioethanol production. However, further experiments are needed to determine how to prevent multi-stage failure of reducing medium volume.
doi_str_mv 10.1016/j.jbiosc.2012.03.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1023293555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S138917231200134X</els_id><sourcerecordid>1023293555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-d54e22d8de79c5d6e7f0ab7a1d78cd01d8852cab311bcfed2982ea291d1fd4013</originalsourceid><addsrcrecordid>eNp90U2L1TAUBuAgivOh_0C0G8FNa07SNOlGGAYdBwZG0AF3IU1O7-TSNmPSXrjz6yeXXp2dq2TxnA_eQ8g7oBVQaD5vq23nQ7IVo8AqyitKxQtyCryWZV0zeHn4q7YEyfgJOUtpSylIKuE1OWFMSCVadkp-_4jBLdZPmyJ3w_neTGEo-hjGwuIwLENI3hb3exfDsH80MxY7bwobSj-OofODf0RX2GWY_c7MPkxFmmNWm_0b8qo3Q8K3x_ec3H37-uvye3lze3V9eXFTWlE3c-lEjYw55VC2VrgGZU9NJw04qayj4JQSzJqOA3S2R8daxdCwFhz0rqbAz8mnte9DDH8WTLMefTqsbiYMS9JAGWctF0JkWq_UxpBSxF4_RD-auM9IHzLVW71mqg-Zasp1zjSXvT9OWLoR3b-ivyFm8PEITLJm6KOZrE_PruGgFOPZfVhdb4I2m5jN3c88qaH5MpwLlcWXVWBObOcx6mQ9Thadj2hn7YL__65PO_GiKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023293555</pqid></control><display><type>article</type><title>Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Liu, Yu-Kuo ; Yang, Chih-An ; Chen, Wei-Chuan ; Wei, Yu-Hong</creator><creatorcontrib>Liu, Yu-Kuo ; Yang, Chih-An ; Chen, Wei-Chuan ; Wei, Yu-Hong</creatorcontrib><description>Lignocellulose was converted into reducing sugars by using saccharification enzymes from cocultivated Trichoderma reesei and Aspergillus niger and reducing sugars as nutrients for Zymomonas mobilis to produce bioethanol in an immobilization system. After 96h of cultivation, cocultivated T. reesei and A. niger had enzymatical synergistic effects that enabled a reducing sugar production of 1.29g/L and a cellulose conversion rate of 23.27%. An 18% total inoculum concentration and a 1/1 inoculation ratio of T. reesei to A. niger obtained a reducing sugar production rate and a cellulose conversion rate of 2.57g/L and 46.27%, respectively. The co-immobilization cultivation results showed that using polyurethane as a carrier optimized total saccharification enzyme activity at an inoculum ratio of 1/1 and a total inoculum concentration of 6.5×106spores/mL. Based on the experimental results, the bioreactor design was further modified to enhance bioethanol production. The three strains (A. niger, T. reesei and Z. mobilis) were cocultivated with a co-immobilization cultivation system. The experimental results showed that, after 24h cultivation, bioethanol production reached 0.56g/L, and reducing sugar conversion rate reached 11.2% when using carboxymethylcellulose (CMC) substrates. The experimental results confirmed that the modified bioreactor enhances bioethanol production. However, further experiments are needed to determine how to prevent multi-stage failure of reducing medium volume.</description><identifier>ISSN: 1389-1723</identifier><identifier>EISSN: 1347-4421</identifier><identifier>DOI: 10.1016/j.jbiosc.2012.03.005</identifier><identifier>PMID: 22578592</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alginates ; Aspergillus niger ; Aspergillus niger - enzymology ; Aspergillus niger - growth &amp; development ; Bioethanol ; Biological and medical sciences ; Bioreactors ; Biotechnology ; Carboxymethylcellulose ; Carboxymethylcellulose Sodium - metabolism ; Cells, Immobilized - enzymology ; Cells, Immobilized - metabolism ; cellulose ; Cellulose - chemistry ; Cellulose - metabolism ; enzyme activity ; enzymes ; Ethanol - metabolism ; ethanol production ; Fundamental and applied biological sciences. Psychology ; General aspects ; Glucuronic Acid ; Hexuronic Acids ; hydrolysates ; Immobilization ; Immobilization techniques ; inoculum ; Lignin - chemistry ; Lignin - metabolism ; lignocellulose ; Methods. Procedures. Technologies ; Microspheres ; Modified bioreactor ; nutrients ; polyurethanes ; Reducing enzyme ; reducing sugars ; saccharification ; Saccharification enzyme ; synergism ; Trichoderma - enzymology ; Trichoderma - growth &amp; development ; Trichoderma reesei ; Various methods and equipments ; Zymomonas - growth &amp; development ; Zymomonas - metabolism ; Zymomonas mobilis</subject><ispartof>Journal of bioscience and bioengineering, 2012-08, Vol.114 (2), p.198-203</ispartof><rights>2012</rights><rights>2015 INIST-CNRS</rights><rights>Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-d54e22d8de79c5d6e7f0ab7a1d78cd01d8852cab311bcfed2982ea291d1fd4013</citedby><cites>FETCH-LOGICAL-c546t-d54e22d8de79c5d6e7f0ab7a1d78cd01d8852cab311bcfed2982ea291d1fd4013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbiosc.2012.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26318823$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22578592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yu-Kuo</creatorcontrib><creatorcontrib>Yang, Chih-An</creatorcontrib><creatorcontrib>Chen, Wei-Chuan</creatorcontrib><creatorcontrib>Wei, Yu-Hong</creatorcontrib><title>Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy</title><title>Journal of bioscience and bioengineering</title><addtitle>J Biosci Bioeng</addtitle><description>Lignocellulose was converted into reducing sugars by using saccharification enzymes from cocultivated Trichoderma reesei and Aspergillus niger and reducing sugars as nutrients for Zymomonas mobilis to produce bioethanol in an immobilization system. After 96h of cultivation, cocultivated T. reesei and A. niger had enzymatical synergistic effects that enabled a reducing sugar production of 1.29g/L and a cellulose conversion rate of 23.27%. An 18% total inoculum concentration and a 1/1 inoculation ratio of T. reesei to A. niger obtained a reducing sugar production rate and a cellulose conversion rate of 2.57g/L and 46.27%, respectively. The co-immobilization cultivation results showed that using polyurethane as a carrier optimized total saccharification enzyme activity at an inoculum ratio of 1/1 and a total inoculum concentration of 6.5×106spores/mL. Based on the experimental results, the bioreactor design was further modified to enhance bioethanol production. The three strains (A. niger, T. reesei and Z. mobilis) were cocultivated with a co-immobilization cultivation system. The experimental results showed that, after 24h cultivation, bioethanol production reached 0.56g/L, and reducing sugar conversion rate reached 11.2% when using carboxymethylcellulose (CMC) substrates. The experimental results confirmed that the modified bioreactor enhances bioethanol production. However, further experiments are needed to determine how to prevent multi-stage failure of reducing medium volume.</description><subject>Alginates</subject><subject>Aspergillus niger</subject><subject>Aspergillus niger - enzymology</subject><subject>Aspergillus niger - growth &amp; development</subject><subject>Bioethanol</subject><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Carboxymethylcellulose</subject><subject>Carboxymethylcellulose Sodium - metabolism</subject><subject>Cells, Immobilized - enzymology</subject><subject>Cells, Immobilized - metabolism</subject><subject>cellulose</subject><subject>Cellulose - chemistry</subject><subject>Cellulose - metabolism</subject><subject>enzyme activity</subject><subject>enzymes</subject><subject>Ethanol - metabolism</subject><subject>ethanol production</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Glucuronic Acid</subject><subject>Hexuronic Acids</subject><subject>hydrolysates</subject><subject>Immobilization</subject><subject>Immobilization techniques</subject><subject>inoculum</subject><subject>Lignin - chemistry</subject><subject>Lignin - metabolism</subject><subject>lignocellulose</subject><subject>Methods. Procedures. Technologies</subject><subject>Microspheres</subject><subject>Modified bioreactor</subject><subject>nutrients</subject><subject>polyurethanes</subject><subject>Reducing enzyme</subject><subject>reducing sugars</subject><subject>saccharification</subject><subject>Saccharification enzyme</subject><subject>synergism</subject><subject>Trichoderma - enzymology</subject><subject>Trichoderma - growth &amp; development</subject><subject>Trichoderma reesei</subject><subject>Various methods and equipments</subject><subject>Zymomonas - growth &amp; development</subject><subject>Zymomonas - metabolism</subject><subject>Zymomonas mobilis</subject><issn>1389-1723</issn><issn>1347-4421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U2L1TAUBuAgivOh_0C0G8FNa07SNOlGGAYdBwZG0AF3IU1O7-TSNmPSXrjz6yeXXp2dq2TxnA_eQ8g7oBVQaD5vq23nQ7IVo8AqyitKxQtyCryWZV0zeHn4q7YEyfgJOUtpSylIKuE1OWFMSCVadkp-_4jBLdZPmyJ3w_neTGEo-hjGwuIwLENI3hb3exfDsH80MxY7bwobSj-OofODf0RX2GWY_c7MPkxFmmNWm_0b8qo3Q8K3x_ec3H37-uvye3lze3V9eXFTWlE3c-lEjYw55VC2VrgGZU9NJw04qayj4JQSzJqOA3S2R8daxdCwFhz0rqbAz8mnte9DDH8WTLMefTqsbiYMS9JAGWctF0JkWq_UxpBSxF4_RD-auM9IHzLVW71mqg-Zasp1zjSXvT9OWLoR3b-ivyFm8PEITLJm6KOZrE_PruGgFOPZfVhdb4I2m5jN3c88qaH5MpwLlcWXVWBObOcx6mQ9Thadj2hn7YL__65PO_GiKw</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Liu, Yu-Kuo</creator><creator>Yang, Chih-An</creator><creator>Chen, Wei-Chuan</creator><creator>Wei, Yu-Hong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120801</creationdate><title>Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy</title><author>Liu, Yu-Kuo ; Yang, Chih-An ; Chen, Wei-Chuan ; Wei, Yu-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-d54e22d8de79c5d6e7f0ab7a1d78cd01d8852cab311bcfed2982ea291d1fd4013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alginates</topic><topic>Aspergillus niger</topic><topic>Aspergillus niger - enzymology</topic><topic>Aspergillus niger - growth &amp; development</topic><topic>Bioethanol</topic><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Carboxymethylcellulose</topic><topic>Carboxymethylcellulose Sodium - metabolism</topic><topic>Cells, Immobilized - enzymology</topic><topic>Cells, Immobilized - metabolism</topic><topic>cellulose</topic><topic>Cellulose - chemistry</topic><topic>Cellulose - metabolism</topic><topic>enzyme activity</topic><topic>enzymes</topic><topic>Ethanol - metabolism</topic><topic>ethanol production</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Glucuronic Acid</topic><topic>Hexuronic Acids</topic><topic>hydrolysates</topic><topic>Immobilization</topic><topic>Immobilization techniques</topic><topic>inoculum</topic><topic>Lignin - chemistry</topic><topic>Lignin - metabolism</topic><topic>lignocellulose</topic><topic>Methods. Procedures. Technologies</topic><topic>Microspheres</topic><topic>Modified bioreactor</topic><topic>nutrients</topic><topic>polyurethanes</topic><topic>Reducing enzyme</topic><topic>reducing sugars</topic><topic>saccharification</topic><topic>Saccharification enzyme</topic><topic>synergism</topic><topic>Trichoderma - enzymology</topic><topic>Trichoderma - growth &amp; development</topic><topic>Trichoderma reesei</topic><topic>Various methods and equipments</topic><topic>Zymomonas - growth &amp; development</topic><topic>Zymomonas - metabolism</topic><topic>Zymomonas mobilis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yu-Kuo</creatorcontrib><creatorcontrib>Yang, Chih-An</creatorcontrib><creatorcontrib>Chen, Wei-Chuan</creatorcontrib><creatorcontrib>Wei, Yu-Hong</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of bioscience and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yu-Kuo</au><au>Yang, Chih-An</au><au>Chen, Wei-Chuan</au><au>Wei, Yu-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy</atitle><jtitle>Journal of bioscience and bioengineering</jtitle><addtitle>J Biosci Bioeng</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>114</volume><issue>2</issue><spage>198</spage><epage>203</epage><pages>198-203</pages><issn>1389-1723</issn><eissn>1347-4421</eissn><abstract>Lignocellulose was converted into reducing sugars by using saccharification enzymes from cocultivated Trichoderma reesei and Aspergillus niger and reducing sugars as nutrients for Zymomonas mobilis to produce bioethanol in an immobilization system. After 96h of cultivation, cocultivated T. reesei and A. niger had enzymatical synergistic effects that enabled a reducing sugar production of 1.29g/L and a cellulose conversion rate of 23.27%. An 18% total inoculum concentration and a 1/1 inoculation ratio of T. reesei to A. niger obtained a reducing sugar production rate and a cellulose conversion rate of 2.57g/L and 46.27%, respectively. The co-immobilization cultivation results showed that using polyurethane as a carrier optimized total saccharification enzyme activity at an inoculum ratio of 1/1 and a total inoculum concentration of 6.5×106spores/mL. Based on the experimental results, the bioreactor design was further modified to enhance bioethanol production. The three strains (A. niger, T. reesei and Z. mobilis) were cocultivated with a co-immobilization cultivation system. The experimental results showed that, after 24h cultivation, bioethanol production reached 0.56g/L, and reducing sugar conversion rate reached 11.2% when using carboxymethylcellulose (CMC) substrates. The experimental results confirmed that the modified bioreactor enhances bioethanol production. However, further experiments are needed to determine how to prevent multi-stage failure of reducing medium volume.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>22578592</pmid><doi>10.1016/j.jbiosc.2012.03.005</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1389-1723
ispartof Journal of bioscience and bioengineering, 2012-08, Vol.114 (2), p.198-203
issn 1389-1723
1347-4421
language eng
recordid cdi_proquest_miscellaneous_1023293555
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Alginates
Aspergillus niger
Aspergillus niger - enzymology
Aspergillus niger - growth & development
Bioethanol
Biological and medical sciences
Bioreactors
Biotechnology
Carboxymethylcellulose
Carboxymethylcellulose Sodium - metabolism
Cells, Immobilized - enzymology
Cells, Immobilized - metabolism
cellulose
Cellulose - chemistry
Cellulose - metabolism
enzyme activity
enzymes
Ethanol - metabolism
ethanol production
Fundamental and applied biological sciences. Psychology
General aspects
Glucuronic Acid
Hexuronic Acids
hydrolysates
Immobilization
Immobilization techniques
inoculum
Lignin - chemistry
Lignin - metabolism
lignocellulose
Methods. Procedures. Technologies
Microspheres
Modified bioreactor
nutrients
polyurethanes
Reducing enzyme
reducing sugars
saccharification
Saccharification enzyme
synergism
Trichoderma - enzymology
Trichoderma - growth & development
Trichoderma reesei
Various methods and equipments
Zymomonas - growth & development
Zymomonas - metabolism
Zymomonas mobilis
title Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Producing%20bioethanol%20from%20cellulosic%20hydrolyzate%20via%20co-immobilized%20cultivation%20strategy&rft.jtitle=Journal%20of%20bioscience%20and%20bioengineering&rft.au=Liu,%20Yu-Kuo&rft.date=2012-08-01&rft.volume=114&rft.issue=2&rft.spage=198&rft.epage=203&rft.pages=198-203&rft.issn=1389-1723&rft.eissn=1347-4421&rft_id=info:doi/10.1016/j.jbiosc.2012.03.005&rft_dat=%3Cproquest_cross%3E1023293555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023293555&rft_id=info:pmid/22578592&rft_els_id=S138917231200134X&rfr_iscdi=true