Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy
Lignocellulose was converted into reducing sugars by using saccharification enzymes from cocultivated Trichoderma reesei and Aspergillus niger and reducing sugars as nutrients for Zymomonas mobilis to produce bioethanol in an immobilization system. After 96h of cultivation, cocultivated T. reesei an...
Gespeichert in:
Veröffentlicht in: | Journal of bioscience and bioengineering 2012-08, Vol.114 (2), p.198-203 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | 2 |
container_start_page | 198 |
container_title | Journal of bioscience and bioengineering |
container_volume | 114 |
creator | Liu, Yu-Kuo Yang, Chih-An Chen, Wei-Chuan Wei, Yu-Hong |
description | Lignocellulose was converted into reducing sugars by using saccharification enzymes from cocultivated Trichoderma reesei and Aspergillus niger and reducing sugars as nutrients for Zymomonas mobilis to produce bioethanol in an immobilization system. After 96h of cultivation, cocultivated T. reesei and A. niger had enzymatical synergistic effects that enabled a reducing sugar production of 1.29g/L and a cellulose conversion rate of 23.27%. An 18% total inoculum concentration and a 1/1 inoculation ratio of T. reesei to A. niger obtained a reducing sugar production rate and a cellulose conversion rate of 2.57g/L and 46.27%, respectively. The co-immobilization cultivation results showed that using polyurethane as a carrier optimized total saccharification enzyme activity at an inoculum ratio of 1/1 and a total inoculum concentration of 6.5×106spores/mL. Based on the experimental results, the bioreactor design was further modified to enhance bioethanol production. The three strains (A. niger, T. reesei and Z. mobilis) were cocultivated with a co-immobilization cultivation system. The experimental results showed that, after 24h cultivation, bioethanol production reached 0.56g/L, and reducing sugar conversion rate reached 11.2% when using carboxymethylcellulose (CMC) substrates. The experimental results confirmed that the modified bioreactor enhances bioethanol production. However, further experiments are needed to determine how to prevent multi-stage failure of reducing medium volume. |
doi_str_mv | 10.1016/j.jbiosc.2012.03.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1023293555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S138917231200134X</els_id><sourcerecordid>1023293555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-d54e22d8de79c5d6e7f0ab7a1d78cd01d8852cab311bcfed2982ea291d1fd4013</originalsourceid><addsrcrecordid>eNp90U2L1TAUBuAgivOh_0C0G8FNa07SNOlGGAYdBwZG0AF3IU1O7-TSNmPSXrjz6yeXXp2dq2TxnA_eQ8g7oBVQaD5vq23nQ7IVo8AqyitKxQtyCryWZV0zeHn4q7YEyfgJOUtpSylIKuE1OWFMSCVadkp-_4jBLdZPmyJ3w_neTGEo-hjGwuIwLENI3hb3exfDsH80MxY7bwobSj-OofODf0RX2GWY_c7MPkxFmmNWm_0b8qo3Q8K3x_ec3H37-uvye3lze3V9eXFTWlE3c-lEjYw55VC2VrgGZU9NJw04qayj4JQSzJqOA3S2R8daxdCwFhz0rqbAz8mnte9DDH8WTLMefTqsbiYMS9JAGWctF0JkWq_UxpBSxF4_RD-auM9IHzLVW71mqg-Zasp1zjSXvT9OWLoR3b-ivyFm8PEITLJm6KOZrE_PruGgFOPZfVhdb4I2m5jN3c88qaH5MpwLlcWXVWBObOcx6mQ9Thadj2hn7YL__65PO_GiKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023293555</pqid></control><display><type>article</type><title>Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Liu, Yu-Kuo ; Yang, Chih-An ; Chen, Wei-Chuan ; Wei, Yu-Hong</creator><creatorcontrib>Liu, Yu-Kuo ; Yang, Chih-An ; Chen, Wei-Chuan ; Wei, Yu-Hong</creatorcontrib><description>Lignocellulose was converted into reducing sugars by using saccharification enzymes from cocultivated Trichoderma reesei and Aspergillus niger and reducing sugars as nutrients for Zymomonas mobilis to produce bioethanol in an immobilization system. After 96h of cultivation, cocultivated T. reesei and A. niger had enzymatical synergistic effects that enabled a reducing sugar production of 1.29g/L and a cellulose conversion rate of 23.27%. An 18% total inoculum concentration and a 1/1 inoculation ratio of T. reesei to A. niger obtained a reducing sugar production rate and a cellulose conversion rate of 2.57g/L and 46.27%, respectively. The co-immobilization cultivation results showed that using polyurethane as a carrier optimized total saccharification enzyme activity at an inoculum ratio of 1/1 and a total inoculum concentration of 6.5×106spores/mL. Based on the experimental results, the bioreactor design was further modified to enhance bioethanol production. The three strains (A. niger, T. reesei and Z. mobilis) were cocultivated with a co-immobilization cultivation system. The experimental results showed that, after 24h cultivation, bioethanol production reached 0.56g/L, and reducing sugar conversion rate reached 11.2% when using carboxymethylcellulose (CMC) substrates. The experimental results confirmed that the modified bioreactor enhances bioethanol production. However, further experiments are needed to determine how to prevent multi-stage failure of reducing medium volume.</description><identifier>ISSN: 1389-1723</identifier><identifier>EISSN: 1347-4421</identifier><identifier>DOI: 10.1016/j.jbiosc.2012.03.005</identifier><identifier>PMID: 22578592</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alginates ; Aspergillus niger ; Aspergillus niger - enzymology ; Aspergillus niger - growth & development ; Bioethanol ; Biological and medical sciences ; Bioreactors ; Biotechnology ; Carboxymethylcellulose ; Carboxymethylcellulose Sodium - metabolism ; Cells, Immobilized - enzymology ; Cells, Immobilized - metabolism ; cellulose ; Cellulose - chemistry ; Cellulose - metabolism ; enzyme activity ; enzymes ; Ethanol - metabolism ; ethanol production ; Fundamental and applied biological sciences. Psychology ; General aspects ; Glucuronic Acid ; Hexuronic Acids ; hydrolysates ; Immobilization ; Immobilization techniques ; inoculum ; Lignin - chemistry ; Lignin - metabolism ; lignocellulose ; Methods. Procedures. Technologies ; Microspheres ; Modified bioreactor ; nutrients ; polyurethanes ; Reducing enzyme ; reducing sugars ; saccharification ; Saccharification enzyme ; synergism ; Trichoderma - enzymology ; Trichoderma - growth & development ; Trichoderma reesei ; Various methods and equipments ; Zymomonas - growth & development ; Zymomonas - metabolism ; Zymomonas mobilis</subject><ispartof>Journal of bioscience and bioengineering, 2012-08, Vol.114 (2), p.198-203</ispartof><rights>2012</rights><rights>2015 INIST-CNRS</rights><rights>Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-d54e22d8de79c5d6e7f0ab7a1d78cd01d8852cab311bcfed2982ea291d1fd4013</citedby><cites>FETCH-LOGICAL-c546t-d54e22d8de79c5d6e7f0ab7a1d78cd01d8852cab311bcfed2982ea291d1fd4013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbiosc.2012.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26318823$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22578592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yu-Kuo</creatorcontrib><creatorcontrib>Yang, Chih-An</creatorcontrib><creatorcontrib>Chen, Wei-Chuan</creatorcontrib><creatorcontrib>Wei, Yu-Hong</creatorcontrib><title>Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy</title><title>Journal of bioscience and bioengineering</title><addtitle>J Biosci Bioeng</addtitle><description>Lignocellulose was converted into reducing sugars by using saccharification enzymes from cocultivated Trichoderma reesei and Aspergillus niger and reducing sugars as nutrients for Zymomonas mobilis to produce bioethanol in an immobilization system. After 96h of cultivation, cocultivated T. reesei and A. niger had enzymatical synergistic effects that enabled a reducing sugar production of 1.29g/L and a cellulose conversion rate of 23.27%. An 18% total inoculum concentration and a 1/1 inoculation ratio of T. reesei to A. niger obtained a reducing sugar production rate and a cellulose conversion rate of 2.57g/L and 46.27%, respectively. The co-immobilization cultivation results showed that using polyurethane as a carrier optimized total saccharification enzyme activity at an inoculum ratio of 1/1 and a total inoculum concentration of 6.5×106spores/mL. Based on the experimental results, the bioreactor design was further modified to enhance bioethanol production. The three strains (A. niger, T. reesei and Z. mobilis) were cocultivated with a co-immobilization cultivation system. The experimental results showed that, after 24h cultivation, bioethanol production reached 0.56g/L, and reducing sugar conversion rate reached 11.2% when using carboxymethylcellulose (CMC) substrates. The experimental results confirmed that the modified bioreactor enhances bioethanol production. However, further experiments are needed to determine how to prevent multi-stage failure of reducing medium volume.</description><subject>Alginates</subject><subject>Aspergillus niger</subject><subject>Aspergillus niger - enzymology</subject><subject>Aspergillus niger - growth & development</subject><subject>Bioethanol</subject><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Carboxymethylcellulose</subject><subject>Carboxymethylcellulose Sodium - metabolism</subject><subject>Cells, Immobilized - enzymology</subject><subject>Cells, Immobilized - metabolism</subject><subject>cellulose</subject><subject>Cellulose - chemistry</subject><subject>Cellulose - metabolism</subject><subject>enzyme activity</subject><subject>enzymes</subject><subject>Ethanol - metabolism</subject><subject>ethanol production</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Glucuronic Acid</subject><subject>Hexuronic Acids</subject><subject>hydrolysates</subject><subject>Immobilization</subject><subject>Immobilization techniques</subject><subject>inoculum</subject><subject>Lignin - chemistry</subject><subject>Lignin - metabolism</subject><subject>lignocellulose</subject><subject>Methods. Procedures. Technologies</subject><subject>Microspheres</subject><subject>Modified bioreactor</subject><subject>nutrients</subject><subject>polyurethanes</subject><subject>Reducing enzyme</subject><subject>reducing sugars</subject><subject>saccharification</subject><subject>Saccharification enzyme</subject><subject>synergism</subject><subject>Trichoderma - enzymology</subject><subject>Trichoderma - growth & development</subject><subject>Trichoderma reesei</subject><subject>Various methods and equipments</subject><subject>Zymomonas - growth & development</subject><subject>Zymomonas - metabolism</subject><subject>Zymomonas mobilis</subject><issn>1389-1723</issn><issn>1347-4421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U2L1TAUBuAgivOh_0C0G8FNa07SNOlGGAYdBwZG0AF3IU1O7-TSNmPSXrjz6yeXXp2dq2TxnA_eQ8g7oBVQaD5vq23nQ7IVo8AqyitKxQtyCryWZV0zeHn4q7YEyfgJOUtpSylIKuE1OWFMSCVadkp-_4jBLdZPmyJ3w_neTGEo-hjGwuIwLENI3hb3exfDsH80MxY7bwobSj-OofODf0RX2GWY_c7MPkxFmmNWm_0b8qo3Q8K3x_ec3H37-uvye3lze3V9eXFTWlE3c-lEjYw55VC2VrgGZU9NJw04qayj4JQSzJqOA3S2R8daxdCwFhz0rqbAz8mnte9DDH8WTLMefTqsbiYMS9JAGWctF0JkWq_UxpBSxF4_RD-auM9IHzLVW71mqg-Zasp1zjSXvT9OWLoR3b-ivyFm8PEITLJm6KOZrE_PruGgFOPZfVhdb4I2m5jN3c88qaH5MpwLlcWXVWBObOcx6mQ9Thadj2hn7YL__65PO_GiKw</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Liu, Yu-Kuo</creator><creator>Yang, Chih-An</creator><creator>Chen, Wei-Chuan</creator><creator>Wei, Yu-Hong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120801</creationdate><title>Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy</title><author>Liu, Yu-Kuo ; Yang, Chih-An ; Chen, Wei-Chuan ; Wei, Yu-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-d54e22d8de79c5d6e7f0ab7a1d78cd01d8852cab311bcfed2982ea291d1fd4013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alginates</topic><topic>Aspergillus niger</topic><topic>Aspergillus niger - enzymology</topic><topic>Aspergillus niger - growth & development</topic><topic>Bioethanol</topic><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Carboxymethylcellulose</topic><topic>Carboxymethylcellulose Sodium - metabolism</topic><topic>Cells, Immobilized - enzymology</topic><topic>Cells, Immobilized - metabolism</topic><topic>cellulose</topic><topic>Cellulose - chemistry</topic><topic>Cellulose - metabolism</topic><topic>enzyme activity</topic><topic>enzymes</topic><topic>Ethanol - metabolism</topic><topic>ethanol production</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Glucuronic Acid</topic><topic>Hexuronic Acids</topic><topic>hydrolysates</topic><topic>Immobilization</topic><topic>Immobilization techniques</topic><topic>inoculum</topic><topic>Lignin - chemistry</topic><topic>Lignin - metabolism</topic><topic>lignocellulose</topic><topic>Methods. Procedures. Technologies</topic><topic>Microspheres</topic><topic>Modified bioreactor</topic><topic>nutrients</topic><topic>polyurethanes</topic><topic>Reducing enzyme</topic><topic>reducing sugars</topic><topic>saccharification</topic><topic>Saccharification enzyme</topic><topic>synergism</topic><topic>Trichoderma - enzymology</topic><topic>Trichoderma - growth & development</topic><topic>Trichoderma reesei</topic><topic>Various methods and equipments</topic><topic>Zymomonas - growth & development</topic><topic>Zymomonas - metabolism</topic><topic>Zymomonas mobilis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yu-Kuo</creatorcontrib><creatorcontrib>Yang, Chih-An</creatorcontrib><creatorcontrib>Chen, Wei-Chuan</creatorcontrib><creatorcontrib>Wei, Yu-Hong</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of bioscience and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yu-Kuo</au><au>Yang, Chih-An</au><au>Chen, Wei-Chuan</au><au>Wei, Yu-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy</atitle><jtitle>Journal of bioscience and bioengineering</jtitle><addtitle>J Biosci Bioeng</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>114</volume><issue>2</issue><spage>198</spage><epage>203</epage><pages>198-203</pages><issn>1389-1723</issn><eissn>1347-4421</eissn><abstract>Lignocellulose was converted into reducing sugars by using saccharification enzymes from cocultivated Trichoderma reesei and Aspergillus niger and reducing sugars as nutrients for Zymomonas mobilis to produce bioethanol in an immobilization system. After 96h of cultivation, cocultivated T. reesei and A. niger had enzymatical synergistic effects that enabled a reducing sugar production of 1.29g/L and a cellulose conversion rate of 23.27%. An 18% total inoculum concentration and a 1/1 inoculation ratio of T. reesei to A. niger obtained a reducing sugar production rate and a cellulose conversion rate of 2.57g/L and 46.27%, respectively. The co-immobilization cultivation results showed that using polyurethane as a carrier optimized total saccharification enzyme activity at an inoculum ratio of 1/1 and a total inoculum concentration of 6.5×106spores/mL. Based on the experimental results, the bioreactor design was further modified to enhance bioethanol production. The three strains (A. niger, T. reesei and Z. mobilis) were cocultivated with a co-immobilization cultivation system. The experimental results showed that, after 24h cultivation, bioethanol production reached 0.56g/L, and reducing sugar conversion rate reached 11.2% when using carboxymethylcellulose (CMC) substrates. The experimental results confirmed that the modified bioreactor enhances bioethanol production. However, further experiments are needed to determine how to prevent multi-stage failure of reducing medium volume.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>22578592</pmid><doi>10.1016/j.jbiosc.2012.03.005</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-1723 |
ispartof | Journal of bioscience and bioengineering, 2012-08, Vol.114 (2), p.198-203 |
issn | 1389-1723 1347-4421 |
language | eng |
recordid | cdi_proquest_miscellaneous_1023293555 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Alginates Aspergillus niger Aspergillus niger - enzymology Aspergillus niger - growth & development Bioethanol Biological and medical sciences Bioreactors Biotechnology Carboxymethylcellulose Carboxymethylcellulose Sodium - metabolism Cells, Immobilized - enzymology Cells, Immobilized - metabolism cellulose Cellulose - chemistry Cellulose - metabolism enzyme activity enzymes Ethanol - metabolism ethanol production Fundamental and applied biological sciences. Psychology General aspects Glucuronic Acid Hexuronic Acids hydrolysates Immobilization Immobilization techniques inoculum Lignin - chemistry Lignin - metabolism lignocellulose Methods. Procedures. Technologies Microspheres Modified bioreactor nutrients polyurethanes Reducing enzyme reducing sugars saccharification Saccharification enzyme synergism Trichoderma - enzymology Trichoderma - growth & development Trichoderma reesei Various methods and equipments Zymomonas - growth & development Zymomonas - metabolism Zymomonas mobilis |
title | Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Producing%20bioethanol%20from%20cellulosic%20hydrolyzate%20via%20co-immobilized%20cultivation%20strategy&rft.jtitle=Journal%20of%20bioscience%20and%20bioengineering&rft.au=Liu,%20Yu-Kuo&rft.date=2012-08-01&rft.volume=114&rft.issue=2&rft.spage=198&rft.epage=203&rft.pages=198-203&rft.issn=1389-1723&rft.eissn=1347-4421&rft_id=info:doi/10.1016/j.jbiosc.2012.03.005&rft_dat=%3Cproquest_cross%3E1023293555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023293555&rft_id=info:pmid/22578592&rft_els_id=S138917231200134X&rfr_iscdi=true |