LOCAL INSTRUMENTAL VARIABLE METHOD FOR THE GENERALIZED ADDITIVE-INTERACTIVE NONLINEAR VOLATILITY MODEL ESTIMATION

In this article we consider a new separable nonparametric volatility model that includes second-order interaction terms in both mean and conditional variance functions. This is a very flexible nonparametric ARCH model that can potentially explain the behavior of the wide variety of financial assets....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 2012-06, Vol.28 (3), p.629-669
Hauptverfasser: Levine, Michael, Li, Jinguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 669
container_issue 3
container_start_page 629
container_title Econometric theory
container_volume 28
creator Levine, Michael
Li, Jinguang
description In this article we consider a new separable nonparametric volatility model that includes second-order interaction terms in both mean and conditional variance functions. This is a very flexible nonparametric ARCH model that can potentially explain the behavior of the wide variety of financial assets. The model is estimated using the generalized version of the local instrumental variable estimation method first introduced in Kim and Linton (2004, Econometric Theory 20, 1094–1139). This method is computationally more effective than most other nonparametric estimation methods that can potentially be used to estimate components of such a model. Asymptotic behavior of the resulting estimators is investigated and their asymptotic normality is established. Explicit expressions for asymptotic means and variances of these estimators are also obtained.
doi_str_mv 10.1017/S0266466611000363
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1023194811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466611000363</cupid><jstor_id>23257646</jstor_id><sourcerecordid>23257646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-41d2e5c5e6b6e0997c2dc076e8b579e3b6dc8614487143ed5f4c0c286c56a3833</originalsourceid><addsrcrecordid>eNp1kcFLwzAUxoMoOKd_gAch4MVLNWnSpD3WNdsCWQtdHOhldGkmG5t1zXbwvzdlIqJ4SvK-3_e9xwsA1xjdY4T5wxSFjFHGGMYIIcLICehhypKAEoZOQa-Tg04_BxfOrRHCYcJJD-xUMUgVlPlUl08TkWv_mKWlTB-VgBOhx0UGh0UJ9VjAkchFmSr5IjKYZpnUciYCmWtfHHR3mBe5krlISzgrVKqlkvoZTopMKCimWk58qcgvwdmy2jh79XX2wdNQ6ME4UMVI-lkCQ-J4H1BchzYykWULZlGScBPWBnFm40XEE0sWrDYxw5TGHFNi62hJDTJhzEzEKhIT0gd3x9z3ttkdrNvPtytn7GZTvdnm4OYYhQQnNMbYo7e_0HVzaN_8dJ7CiPOI-532AT5Spm2ca-1y_t6utlX74aGO4_M_n-A9N0fP2u2b9tsQkjDinvQ6-cqstot2Vb_an63_S_0EU7WHhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010775700</pqid></control><display><type>article</type><title>LOCAL INSTRUMENTAL VARIABLE METHOD FOR THE GENERALIZED ADDITIVE-INTERACTIVE NONLINEAR VOLATILITY MODEL ESTIMATION</title><source>Jstor Complete Legacy</source><source>Cambridge University Press Journals Complete</source><creator>Levine, Michael ; Li, Jinguang</creator><creatorcontrib>Levine, Michael ; Li, Jinguang</creatorcontrib><description>In this article we consider a new separable nonparametric volatility model that includes second-order interaction terms in both mean and conditional variance functions. This is a very flexible nonparametric ARCH model that can potentially explain the behavior of the wide variety of financial assets. The model is estimated using the generalized version of the local instrumental variable estimation method first introduced in Kim and Linton (2004, Econometric Theory 20, 1094–1139). This method is computationally more effective than most other nonparametric estimation methods that can potentially be used to estimate components of such a model. Asymptotic behavior of the resulting estimators is investigated and their asymptotic normality is established. Explicit expressions for asymptotic means and variances of these estimators are also obtained.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466611000363</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Density estimation ; Econometric models ; Econometrics ; Economic models ; Ergodic theory ; Estimating techniques ; Estimation ; Estimation methods ; Estimators ; Estimators for the mean ; Financial assets ; GARCH models ; Instrumental variables ; Instrumental variables estimation ; Mathematical analysis ; Nonparametric models ; Portfolio management ; Statistical variance ; Stochastic models ; Studies ; Time series ; Variance analysis ; Volatility</subject><ispartof>Econometric theory, 2012-06, Vol.28 (3), p.629-669</ispartof><rights>Copyright © Cambridge University Press 2011</rights><rights>Cambridge University Press 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-41d2e5c5e6b6e0997c2dc076e8b579e3b6dc8614487143ed5f4c0c286c56a3833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23257646$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466611000363/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,799,27901,27902,55603,57992,58225</link.rule.ids></links><search><creatorcontrib>Levine, Michael</creatorcontrib><creatorcontrib>Li, Jinguang</creatorcontrib><title>LOCAL INSTRUMENTAL VARIABLE METHOD FOR THE GENERALIZED ADDITIVE-INTERACTIVE NONLINEAR VOLATILITY MODEL ESTIMATION</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>In this article we consider a new separable nonparametric volatility model that includes second-order interaction terms in both mean and conditional variance functions. This is a very flexible nonparametric ARCH model that can potentially explain the behavior of the wide variety of financial assets. The model is estimated using the generalized version of the local instrumental variable estimation method first introduced in Kim and Linton (2004, Econometric Theory 20, 1094–1139). This method is computationally more effective than most other nonparametric estimation methods that can potentially be used to estimate components of such a model. Asymptotic behavior of the resulting estimators is investigated and their asymptotic normality is established. Explicit expressions for asymptotic means and variances of these estimators are also obtained.</description><subject>Density estimation</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Ergodic theory</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Estimators for the mean</subject><subject>Financial assets</subject><subject>GARCH models</subject><subject>Instrumental variables</subject><subject>Instrumental variables estimation</subject><subject>Mathematical analysis</subject><subject>Nonparametric models</subject><subject>Portfolio management</subject><subject>Statistical variance</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Time series</subject><subject>Variance analysis</subject><subject>Volatility</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kcFLwzAUxoMoOKd_gAch4MVLNWnSpD3WNdsCWQtdHOhldGkmG5t1zXbwvzdlIqJ4SvK-3_e9xwsA1xjdY4T5wxSFjFHGGMYIIcLICehhypKAEoZOQa-Tg04_BxfOrRHCYcJJD-xUMUgVlPlUl08TkWv_mKWlTB-VgBOhx0UGh0UJ9VjAkchFmSr5IjKYZpnUciYCmWtfHHR3mBe5krlISzgrVKqlkvoZTopMKCimWk58qcgvwdmy2jh79XX2wdNQ6ME4UMVI-lkCQ-J4H1BchzYykWULZlGScBPWBnFm40XEE0sWrDYxw5TGHFNi62hJDTJhzEzEKhIT0gd3x9z3ttkdrNvPtytn7GZTvdnm4OYYhQQnNMbYo7e_0HVzaN_8dJ7CiPOI-532AT5Spm2ca-1y_t6utlX74aGO4_M_n-A9N0fP2u2b9tsQkjDinvQ6-cqstot2Vb_an63_S_0EU7WHhw</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Levine, Michael</creator><creator>Li, Jinguang</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20120601</creationdate><title>LOCAL INSTRUMENTAL VARIABLE METHOD FOR THE GENERALIZED ADDITIVE-INTERACTIVE NONLINEAR VOLATILITY MODEL ESTIMATION</title><author>Levine, Michael ; Li, Jinguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-41d2e5c5e6b6e0997c2dc076e8b579e3b6dc8614487143ed5f4c0c286c56a3833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Density estimation</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Ergodic theory</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Estimators for the mean</topic><topic>Financial assets</topic><topic>GARCH models</topic><topic>Instrumental variables</topic><topic>Instrumental variables estimation</topic><topic>Mathematical analysis</topic><topic>Nonparametric models</topic><topic>Portfolio management</topic><topic>Statistical variance</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Time series</topic><topic>Variance analysis</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levine, Michael</creatorcontrib><creatorcontrib>Li, Jinguang</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levine, Michael</au><au>Li, Jinguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LOCAL INSTRUMENTAL VARIABLE METHOD FOR THE GENERALIZED ADDITIVE-INTERACTIVE NONLINEAR VOLATILITY MODEL ESTIMATION</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>28</volume><issue>3</issue><spage>629</spage><epage>669</epage><pages>629-669</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>In this article we consider a new separable nonparametric volatility model that includes second-order interaction terms in both mean and conditional variance functions. This is a very flexible nonparametric ARCH model that can potentially explain the behavior of the wide variety of financial assets. The model is estimated using the generalized version of the local instrumental variable estimation method first introduced in Kim and Linton (2004, Econometric Theory 20, 1094–1139). This method is computationally more effective than most other nonparametric estimation methods that can potentially be used to estimate components of such a model. Asymptotic behavior of the resulting estimators is investigated and their asymptotic normality is established. Explicit expressions for asymptotic means and variances of these estimators are also obtained.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466611000363</doi><tpages>41</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4666
ispartof Econometric theory, 2012-06, Vol.28 (3), p.629-669
issn 0266-4666
1469-4360
language eng
recordid cdi_proquest_miscellaneous_1023194811
source Jstor Complete Legacy; Cambridge University Press Journals Complete
subjects Density estimation
Econometric models
Econometrics
Economic models
Ergodic theory
Estimating techniques
Estimation
Estimation methods
Estimators
Estimators for the mean
Financial assets
GARCH models
Instrumental variables
Instrumental variables estimation
Mathematical analysis
Nonparametric models
Portfolio management
Statistical variance
Stochastic models
Studies
Time series
Variance analysis
Volatility
title LOCAL INSTRUMENTAL VARIABLE METHOD FOR THE GENERALIZED ADDITIVE-INTERACTIVE NONLINEAR VOLATILITY MODEL ESTIMATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LOCAL%20INSTRUMENTAL%20VARIABLE%20METHOD%20FOR%20THE%20GENERALIZED%20ADDITIVE-INTERACTIVE%20NONLINEAR%20VOLATILITY%20MODEL%20ESTIMATION&rft.jtitle=Econometric%20theory&rft.au=Levine,%20Michael&rft.date=2012-06-01&rft.volume=28&rft.issue=3&rft.spage=629&rft.epage=669&rft.pages=629-669&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466611000363&rft_dat=%3Cjstor_proqu%3E23257646%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010775700&rft_id=info:pmid/&rft_cupid=10_1017_S0266466611000363&rft_jstor_id=23257646&rfr_iscdi=true