Confidence intervals for the quantile of treatment effects in randomized experiments

In this paper, we explore partial identification and inference for the quantile of treatment effects for randomized experiments. First, we propose nonparametric estimators of sharp bounds on the quantile of treatment effects and establish their asymptotic properties under general conditions. Second,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2012-04, Vol.167 (2), p.330-344
Hauptverfasser: Fan, Yanqin, Park, Sang Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue 2
container_start_page 330
container_title Journal of econometrics
container_volume 167
creator Fan, Yanqin
Park, Sang Soo
description In this paper, we explore partial identification and inference for the quantile of treatment effects for randomized experiments. First, we propose nonparametric estimators of sharp bounds on the quantile of treatment effects and establish their asymptotic properties under general conditions. Second, we construct confidence intervals for the bounds and the true quantile by using the approach in Chernozhukov et al. (2009). Third, under additional conditions, we develop a new approach to construct confidence intervals for the bounds and the true quantile and refer to it as the order statistic approach. A simulation study is conducted to investigate the finite sample performance of both approaches.
doi_str_mv 10.1016/j.jeconom.2011.09.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1023193835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407611002004</els_id><sourcerecordid>2605669891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-f9015efd794a87b739916c9d613fd53986959168c9220f9e2452c5d54b629abe3</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVooG6anxAQOeWyW33u7pxKMUlbCPSSnsVaGhEttuRIckjy6yvjnHLpaWB43peZh5ArznrO-PBt6Re0KaZdLxjnPYOecTgjKz6Nohsm0J_IikmmOsXG4TP5UsrCGNNqkivysE7RB4fRIg2xYn6et4X6lGl9RPp0mGMNW6TJ05pxrjuMlaL3aGtpPM1zdGkX3tBRfNljDkegfCXnvtXg5fu8IH_vbh_Wv7r7Pz9_r3_cd1ZJUTsPjGv0bgQ1T-NmlAB8sOAGLr3TEqYBdNtMFoRgHlAoLax2Wm0GAfMG5QW5OfXuc3o6YKlmF4rF7XaOmA7FcCYkBzlJ3dDrD-iSDjm26wyIAZRWXDVInyCbUykZvdm3j-b82prMUbVZzLtqc1RtGJimuuW-n3LYnn0OmE2x4ajUhdxMGZfCfxr-AfYkif0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926945414</pqid></control><display><type>article</type><title>Confidence intervals for the quantile of treatment effects in randomized experiments</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Fan, Yanqin ; Park, Sang Soo</creator><creatorcontrib>Fan, Yanqin ; Park, Sang Soo</creatorcontrib><description>In this paper, we explore partial identification and inference for the quantile of treatment effects for randomized experiments. First, we propose nonparametric estimators of sharp bounds on the quantile of treatment effects and establish their asymptotic properties under general conditions. Second, we construct confidence intervals for the bounds and the true quantile by using the approach in Chernozhukov et al. (2009). Third, under additional conditions, we develop a new approach to construct confidence intervals for the bounds and the true quantile and refer to it as the order statistic approach. A simulation study is conducted to investigate the finite sample performance of both approaches.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2011.09.019</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic properties ; Confidence intervals ; Econometric models ; Econometrics ; Estimating techniques ; Estimation ; Experiments ; Heterogeneous treatment effects ; Identification ; Inference ; Order statistic approach ; Partial identification ; Quantile ; Quantile treatment effects ; Samples ; Simulation ; Statistical inference ; Studies</subject><ispartof>Journal of econometrics, 2012-04, Vol.167 (2), p.330-344</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Apr 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-f9015efd794a87b739916c9d613fd53986959168c9220f9e2452c5d54b629abe3</citedby><cites>FETCH-LOGICAL-c432t-f9015efd794a87b739916c9d613fd53986959168c9220f9e2452c5d54b629abe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2011.09.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Fan, Yanqin</creatorcontrib><creatorcontrib>Park, Sang Soo</creatorcontrib><title>Confidence intervals for the quantile of treatment effects in randomized experiments</title><title>Journal of econometrics</title><description>In this paper, we explore partial identification and inference for the quantile of treatment effects for randomized experiments. First, we propose nonparametric estimators of sharp bounds on the quantile of treatment effects and establish their asymptotic properties under general conditions. Second, we construct confidence intervals for the bounds and the true quantile by using the approach in Chernozhukov et al. (2009). Third, under additional conditions, we develop a new approach to construct confidence intervals for the bounds and the true quantile and refer to it as the order statistic approach. A simulation study is conducted to investigate the finite sample performance of both approaches.</description><subject>Asymptotic properties</subject><subject>Confidence intervals</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Experiments</subject><subject>Heterogeneous treatment effects</subject><subject>Identification</subject><subject>Inference</subject><subject>Order statistic approach</subject><subject>Partial identification</subject><subject>Quantile</subject><subject>Quantile treatment effects</subject><subject>Samples</subject><subject>Simulation</subject><subject>Statistical inference</subject><subject>Studies</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVooG6anxAQOeWyW33u7pxKMUlbCPSSnsVaGhEttuRIckjy6yvjnHLpaWB43peZh5ArznrO-PBt6Re0KaZdLxjnPYOecTgjKz6Nohsm0J_IikmmOsXG4TP5UsrCGNNqkivysE7RB4fRIg2xYn6et4X6lGl9RPp0mGMNW6TJ05pxrjuMlaL3aGtpPM1zdGkX3tBRfNljDkegfCXnvtXg5fu8IH_vbh_Wv7r7Pz9_r3_cd1ZJUTsPjGv0bgQ1T-NmlAB8sOAGLr3TEqYBdNtMFoRgHlAoLax2Wm0GAfMG5QW5OfXuc3o6YKlmF4rF7XaOmA7FcCYkBzlJ3dDrD-iSDjm26wyIAZRWXDVInyCbUykZvdm3j-b82prMUbVZzLtqc1RtGJimuuW-n3LYnn0OmE2x4ajUhdxMGZfCfxr-AfYkif0</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Fan, Yanqin</creator><creator>Park, Sang Soo</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20120401</creationdate><title>Confidence intervals for the quantile of treatment effects in randomized experiments</title><author>Fan, Yanqin ; Park, Sang Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-f9015efd794a87b739916c9d613fd53986959168c9220f9e2452c5d54b629abe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic properties</topic><topic>Confidence intervals</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Experiments</topic><topic>Heterogeneous treatment effects</topic><topic>Identification</topic><topic>Inference</topic><topic>Order statistic approach</topic><topic>Partial identification</topic><topic>Quantile</topic><topic>Quantile treatment effects</topic><topic>Samples</topic><topic>Simulation</topic><topic>Statistical inference</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Yanqin</creatorcontrib><creatorcontrib>Park, Sang Soo</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Yanqin</au><au>Park, Sang Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence intervals for the quantile of treatment effects in randomized experiments</atitle><jtitle>Journal of econometrics</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>167</volume><issue>2</issue><spage>330</spage><epage>344</epage><pages>330-344</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>In this paper, we explore partial identification and inference for the quantile of treatment effects for randomized experiments. First, we propose nonparametric estimators of sharp bounds on the quantile of treatment effects and establish their asymptotic properties under general conditions. Second, we construct confidence intervals for the bounds and the true quantile by using the approach in Chernozhukov et al. (2009). Third, under additional conditions, we develop a new approach to construct confidence intervals for the bounds and the true quantile and refer to it as the order statistic approach. A simulation study is conducted to investigate the finite sample performance of both approaches.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2011.09.019</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2012-04, Vol.167 (2), p.330-344
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_1023193835
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Asymptotic properties
Confidence intervals
Econometric models
Econometrics
Estimating techniques
Estimation
Experiments
Heterogeneous treatment effects
Identification
Inference
Order statistic approach
Partial identification
Quantile
Quantile treatment effects
Samples
Simulation
Statistical inference
Studies
title Confidence intervals for the quantile of treatment effects in randomized experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A04%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence%20intervals%20for%20the%20quantile%20of%20treatment%20effects%20in%20randomized%20experiments&rft.jtitle=Journal%20of%20econometrics&rft.au=Fan,%20Yanqin&rft.date=2012-04-01&rft.volume=167&rft.issue=2&rft.spage=330&rft.epage=344&rft.pages=330-344&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2011.09.019&rft_dat=%3Cproquest_cross%3E2605669891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926945414&rft_id=info:pmid/&rft_els_id=S0304407611002004&rfr_iscdi=true