Friendship 3-hypergraphs

A friendship 3-hypergraph is a 3-hypergraph in which for any 3 distinct vertices u, v and w, there exists a unique fourth vertex x such that uvx, uwx, vwx are 3-hyperedges. Sós constructed friendship 3-hypergraphs using Steiner triple systems. Hartke and Vandenbussche showed that any friendship 3-hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2012-06, Vol.312 (11), p.1892-1899
Hauptverfasser: Li, P.C., van Rees, G.H.J., Seo, Stela H., Singhi, N.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1899
container_issue 11
container_start_page 1892
container_title Discrete mathematics
container_volume 312
creator Li, P.C.
van Rees, G.H.J.
Seo, Stela H.
Singhi, N.M.
description A friendship 3-hypergraph is a 3-hypergraph in which for any 3 distinct vertices u, v and w, there exists a unique fourth vertex x such that uvx, uwx, vwx are 3-hyperedges. Sós constructed friendship 3-hypergraphs using Steiner triple systems. Hartke and Vandenbussche showed that any friendship 3-hypergraph can be partitioned into K43’s. (A K43 is the set of four hyperedges of size three that can be formed from a set of 4 elements.) These K43’s form a set of 4-tuples which we call a friendship design. We define a geometric friendship design to be a resolvable friendship design that can be embedded into an affine geometry. Refining the problem from friendship designs to geometric friendship designs allows us to state some structure results about these geometric friendship designs and decrease the search space when searching for geometric friendship designs. Hartke and Vandenbussche discovered 5 new examples of friendship designs which happen to be geometric friendship designs. We show the 3 non-isomorphic geometric designs on 16 vertices are the only such non-isomorphic geometric designs on 16 vertices. We also improve the known lower and upper bounds on the number of hyperedges in any friendship 3-hypergraph. Finally, we show that no friendship 3-hypergraph exists on 11 or 12 points.
doi_str_mv 10.1016/j.disc.2012.02.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022914164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X12001057</els_id><sourcerecordid>1022914164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-9115735a4b4c56ac2be53d4d158bc157571d21f4a4fce1d30f5f3cc809d00ecd3</originalsourceid><addsrcrecordid>eNp9UE1Lw0AUXETBWr2LJ49eEvftR5KCFylWhYIXhd6W7dsXs6Ft4m4r9N93QzwLA8NjZh7MMHYHPAcOxWObOx8xFxxEzgfoMzaBqhRZUcHqnE14UjJZ6NUlu4qx5ekuZDVht4vgaedi4_t7mTXHnsJ3sH0Tr9lFbTeRbv54yr4WL5_zt2z58fo-f15mKMtyn80AdCm1VWuFurAo1qSlUw50tcYk6RKcgFpZVSOBk7zWtUSs-MxxTujklD2Mf_vQ_Rwo7s02NaHNxu6oO0QDXIgZKChUsorRiqGLMVBt-uC3NhyTyQwzmNYMM5hhBsMH6BR6GkOUSvx6CiZiaozkfCDcG9f5_-InCIRkjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022914164</pqid></control><display><type>article</type><title>Friendship 3-hypergraphs</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, P.C. ; van Rees, G.H.J. ; Seo, Stela H. ; Singhi, N.M.</creator><creatorcontrib>Li, P.C. ; van Rees, G.H.J. ; Seo, Stela H. ; Singhi, N.M.</creatorcontrib><description>A friendship 3-hypergraph is a 3-hypergraph in which for any 3 distinct vertices u, v and w, there exists a unique fourth vertex x such that uvx, uwx, vwx are 3-hyperedges. Sós constructed friendship 3-hypergraphs using Steiner triple systems. Hartke and Vandenbussche showed that any friendship 3-hypergraph can be partitioned into K43’s. (A K43 is the set of four hyperedges of size three that can be formed from a set of 4 elements.) These K43’s form a set of 4-tuples which we call a friendship design. We define a geometric friendship design to be a resolvable friendship design that can be embedded into an affine geometry. Refining the problem from friendship designs to geometric friendship designs allows us to state some structure results about these geometric friendship designs and decrease the search space when searching for geometric friendship designs. Hartke and Vandenbussche discovered 5 new examples of friendship designs which happen to be geometric friendship designs. We show the 3 non-isomorphic geometric designs on 16 vertices are the only such non-isomorphic geometric designs on 16 vertices. We also improve the known lower and upper bounds on the number of hyperedges in any friendship 3-hypergraph. Finally, we show that no friendship 3-hypergraph exists on 11 or 12 points.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2012.02.025</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Construction ; Design engineering ; Enumeration ; Friendship 3-hypergraphs ; Friendship graph ; Geometric friendship designs, bounds, computer algorithm ; Mathematical analysis ; Refining ; Searching ; Upper bounds</subject><ispartof>Discrete mathematics, 2012-06, Vol.312 (11), p.1892-1899</ispartof><rights>2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-9115735a4b4c56ac2be53d4d158bc157571d21f4a4fce1d30f5f3cc809d00ecd3</citedby><cites>FETCH-LOGICAL-c377t-9115735a4b4c56ac2be53d4d158bc157571d21f4a4fce1d30f5f3cc809d00ecd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.disc.2012.02.025$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, P.C.</creatorcontrib><creatorcontrib>van Rees, G.H.J.</creatorcontrib><creatorcontrib>Seo, Stela H.</creatorcontrib><creatorcontrib>Singhi, N.M.</creatorcontrib><title>Friendship 3-hypergraphs</title><title>Discrete mathematics</title><description>A friendship 3-hypergraph is a 3-hypergraph in which for any 3 distinct vertices u, v and w, there exists a unique fourth vertex x such that uvx, uwx, vwx are 3-hyperedges. Sós constructed friendship 3-hypergraphs using Steiner triple systems. Hartke and Vandenbussche showed that any friendship 3-hypergraph can be partitioned into K43’s. (A K43 is the set of four hyperedges of size three that can be formed from a set of 4 elements.) These K43’s form a set of 4-tuples which we call a friendship design. We define a geometric friendship design to be a resolvable friendship design that can be embedded into an affine geometry. Refining the problem from friendship designs to geometric friendship designs allows us to state some structure results about these geometric friendship designs and decrease the search space when searching for geometric friendship designs. Hartke and Vandenbussche discovered 5 new examples of friendship designs which happen to be geometric friendship designs. We show the 3 non-isomorphic geometric designs on 16 vertices are the only such non-isomorphic geometric designs on 16 vertices. We also improve the known lower and upper bounds on the number of hyperedges in any friendship 3-hypergraph. Finally, we show that no friendship 3-hypergraph exists on 11 or 12 points.</description><subject>Construction</subject><subject>Design engineering</subject><subject>Enumeration</subject><subject>Friendship 3-hypergraphs</subject><subject>Friendship graph</subject><subject>Geometric friendship designs, bounds, computer algorithm</subject><subject>Mathematical analysis</subject><subject>Refining</subject><subject>Searching</subject><subject>Upper bounds</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Lw0AUXETBWr2LJ49eEvftR5KCFylWhYIXhd6W7dsXs6Ft4m4r9N93QzwLA8NjZh7MMHYHPAcOxWObOx8xFxxEzgfoMzaBqhRZUcHqnE14UjJZ6NUlu4qx5ekuZDVht4vgaedi4_t7mTXHnsJ3sH0Tr9lFbTeRbv54yr4WL5_zt2z58fo-f15mKMtyn80AdCm1VWuFurAo1qSlUw50tcYk6RKcgFpZVSOBk7zWtUSs-MxxTujklD2Mf_vQ_Rwo7s02NaHNxu6oO0QDXIgZKChUsorRiqGLMVBt-uC3NhyTyQwzmNYMM5hhBsMH6BR6GkOUSvx6CiZiaozkfCDcG9f5_-InCIRkjQ</recordid><startdate>20120606</startdate><enddate>20120606</enddate><creator>Li, P.C.</creator><creator>van Rees, G.H.J.</creator><creator>Seo, Stela H.</creator><creator>Singhi, N.M.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120606</creationdate><title>Friendship 3-hypergraphs</title><author>Li, P.C. ; van Rees, G.H.J. ; Seo, Stela H. ; Singhi, N.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-9115735a4b4c56ac2be53d4d158bc157571d21f4a4fce1d30f5f3cc809d00ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Construction</topic><topic>Design engineering</topic><topic>Enumeration</topic><topic>Friendship 3-hypergraphs</topic><topic>Friendship graph</topic><topic>Geometric friendship designs, bounds, computer algorithm</topic><topic>Mathematical analysis</topic><topic>Refining</topic><topic>Searching</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, P.C.</creatorcontrib><creatorcontrib>van Rees, G.H.J.</creatorcontrib><creatorcontrib>Seo, Stela H.</creatorcontrib><creatorcontrib>Singhi, N.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, P.C.</au><au>van Rees, G.H.J.</au><au>Seo, Stela H.</au><au>Singhi, N.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Friendship 3-hypergraphs</atitle><jtitle>Discrete mathematics</jtitle><date>2012-06-06</date><risdate>2012</risdate><volume>312</volume><issue>11</issue><spage>1892</spage><epage>1899</epage><pages>1892-1899</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>A friendship 3-hypergraph is a 3-hypergraph in which for any 3 distinct vertices u, v and w, there exists a unique fourth vertex x such that uvx, uwx, vwx are 3-hyperedges. Sós constructed friendship 3-hypergraphs using Steiner triple systems. Hartke and Vandenbussche showed that any friendship 3-hypergraph can be partitioned into K43’s. (A K43 is the set of four hyperedges of size three that can be formed from a set of 4 elements.) These K43’s form a set of 4-tuples which we call a friendship design. We define a geometric friendship design to be a resolvable friendship design that can be embedded into an affine geometry. Refining the problem from friendship designs to geometric friendship designs allows us to state some structure results about these geometric friendship designs and decrease the search space when searching for geometric friendship designs. Hartke and Vandenbussche discovered 5 new examples of friendship designs which happen to be geometric friendship designs. We show the 3 non-isomorphic geometric designs on 16 vertices are the only such non-isomorphic geometric designs on 16 vertices. We also improve the known lower and upper bounds on the number of hyperedges in any friendship 3-hypergraph. Finally, we show that no friendship 3-hypergraph exists on 11 or 12 points.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2012.02.025</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2012-06, Vol.312 (11), p.1892-1899
issn 0012-365X
1872-681X
language eng
recordid cdi_proquest_miscellaneous_1022914164
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Construction
Design engineering
Enumeration
Friendship 3-hypergraphs
Friendship graph
Geometric friendship designs, bounds, computer algorithm
Mathematical analysis
Refining
Searching
Upper bounds
title Friendship 3-hypergraphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Friendship%203-hypergraphs&rft.jtitle=Discrete%20mathematics&rft.au=Li,%20P.C.&rft.date=2012-06-06&rft.volume=312&rft.issue=11&rft.spage=1892&rft.epage=1899&rft.pages=1892-1899&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2012.02.025&rft_dat=%3Cproquest_cross%3E1022914164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022914164&rft_id=info:pmid/&rft_els_id=S0012365X12001057&rfr_iscdi=true