Hybrid Optical RF Airborne Communications
The use of hybrid free-space optical (FSO)/radio-frequency (RF) links to provide robust, high-throughput communications, fixed infrastructure links, and their associated networks have been thoroughly investigated for both commercial and military applications. The extension of this paradigm to mobile...
Gespeichert in:
Veröffentlicht in: | Proceedings of the IEEE 2009-06, Vol.97 (6), p.1109-1127 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1127 |
---|---|
container_issue | 6 |
container_start_page | 1109 |
container_title | Proceedings of the IEEE |
container_volume | 97 |
creator | Stotts, Larry B. Stadler, Brian Young, David W. Andrews, Larry C. Cherry, Paul C. Foshee, James J. Kolodzy, Paul J. McIntire, William K. Northcott, Malcolm Phillips, Ronald L. Pike, H. Alan |
description | The use of hybrid free-space optical (FSO)/radio-frequency (RF) links to provide robust, high-throughput communications, fixed infrastructure links, and their associated networks have been thoroughly investigated for both commercial and military applications. The extension of this paradigm to mobile, long-range networks has long been a desire by the military communications community for multigigabit mobile backbone networks. The FSO communications subsystem has historically been the primary limitation. The challenge has been addressing the compensation of propagation effects and dynamic range of the received optical signal. This paper will address the various technologies required to compensate for the effects referenced above. We will outline the effects FSO and RF links experience and how we overcome these degradations. Results from field experiments conducted, including those from the Air Force Research Laboratory Integrated RF/Optical Networked Tactical Targeting Networking Technologies (IRON-T2) program, will be presented. |
doi_str_mv | 10.1109/JPROC.2009.2014969 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022911519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4939408</ieee_id><sourcerecordid>2303976721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-bbcbb16c7cdeb934d3229fb5512e979efb1fc3a32fc16e6dc6a76991009c04953</originalsourceid><addsrcrecordid>eNqFkU9LAzEQxYMoWKtfQC-LB9HD1kyyye4cy2KtUqgUPYdNNgtb9k9Ntod-e1NbPHjQywwMv_eYxyPkGugEgOLj69tqmU8YpRgGJCjxhIxAiCxmTMhTMqIUshgZ4Dm58H5NKeVC8hF5mO-0q8touRlqUzTRahZNa6d719ko79t224XzUPedvyRnVdF4e3XcY_Ixe3rP5_Fi-fySTxex4QhDrLXRGqRJTWk18qTkjGGlhQBmMUVbaagMLzirDEgrSyOLVCJCeN3QBAUfk7uD78b1n1vrB9XW3timKTrbb73iiUAhaRbA-z9BkCkwwTPg_6M0PAkgAAN6-wtd91vXhcQqE1kmGE_TALEDZFzvvbOV2ri6LdwuOKl9Ieq7ELUvRB0LCaKbg6i21v4IEuSYhDRf2fSEfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858852377</pqid></control><display><type>article</type><title>Hybrid Optical RF Airborne Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Stotts, Larry B. ; Stadler, Brian ; Young, David W. ; Andrews, Larry C. ; Cherry, Paul C. ; Foshee, James J. ; Kolodzy, Paul J. ; McIntire, William K. ; Northcott, Malcolm ; Phillips, Ronald L. ; Pike, H. Alan</creator><creatorcontrib>Stotts, Larry B. ; Stadler, Brian ; Young, David W. ; Andrews, Larry C. ; Cherry, Paul C. ; Foshee, James J. ; Kolodzy, Paul J. ; McIntire, William K. ; Northcott, Malcolm ; Phillips, Ronald L. ; Pike, H. Alan</creatorcontrib><description>The use of hybrid free-space optical (FSO)/radio-frequency (RF) links to provide robust, high-throughput communications, fixed infrastructure links, and their associated networks have been thoroughly investigated for both commercial and military applications. The extension of this paradigm to mobile, long-range networks has long been a desire by the military communications community for multigigabit mobile backbone networks. The FSO communications subsystem has historically been the primary limitation. The challenge has been addressing the compensation of propagation effects and dynamic range of the received optical signal. This paper will address the various technologies required to compensate for the effects referenced above. We will outline the effects FSO and RF links experience and how we overcome these degradations. Results from field experiments conducted, including those from the Air Force Research Laboratory Integrated RF/Optical Networked Tactical Targeting Networking Technologies (IRON-T2) program, will be presented.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2009.2014969</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aircraft components ; Communication system field trials ; Communities ; Degradation ; Dynamic range ; free-space optical communications ; gigabit communications ; hybrid communication ; Laboratories ; Links ; long-range communications ; Military applications ; Military communication ; Military communications ; Mobile communication ; Networks ; Optical communication ; Optical fiber networks ; Optical propagation ; optical turbulence compensation ; Radio frequencies ; Radio frequency ; radio-frequency (RF) communications ; Robustness ; Spine</subject><ispartof>Proceedings of the IEEE, 2009-06, Vol.97 (6), p.1109-1127</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-bbcbb16c7cdeb934d3229fb5512e979efb1fc3a32fc16e6dc6a76991009c04953</citedby><cites>FETCH-LOGICAL-c391t-bbcbb16c7cdeb934d3229fb5512e979efb1fc3a32fc16e6dc6a76991009c04953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4939408$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4939408$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stotts, Larry B.</creatorcontrib><creatorcontrib>Stadler, Brian</creatorcontrib><creatorcontrib>Young, David W.</creatorcontrib><creatorcontrib>Andrews, Larry C.</creatorcontrib><creatorcontrib>Cherry, Paul C.</creatorcontrib><creatorcontrib>Foshee, James J.</creatorcontrib><creatorcontrib>Kolodzy, Paul J.</creatorcontrib><creatorcontrib>McIntire, William K.</creatorcontrib><creatorcontrib>Northcott, Malcolm</creatorcontrib><creatorcontrib>Phillips, Ronald L.</creatorcontrib><creatorcontrib>Pike, H. Alan</creatorcontrib><title>Hybrid Optical RF Airborne Communications</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>The use of hybrid free-space optical (FSO)/radio-frequency (RF) links to provide robust, high-throughput communications, fixed infrastructure links, and their associated networks have been thoroughly investigated for both commercial and military applications. The extension of this paradigm to mobile, long-range networks has long been a desire by the military communications community for multigigabit mobile backbone networks. The FSO communications subsystem has historically been the primary limitation. The challenge has been addressing the compensation of propagation effects and dynamic range of the received optical signal. This paper will address the various technologies required to compensate for the effects referenced above. We will outline the effects FSO and RF links experience and how we overcome these degradations. Results from field experiments conducted, including those from the Air Force Research Laboratory Integrated RF/Optical Networked Tactical Targeting Networking Technologies (IRON-T2) program, will be presented.</description><subject>Aircraft components</subject><subject>Communication system field trials</subject><subject>Communities</subject><subject>Degradation</subject><subject>Dynamic range</subject><subject>free-space optical communications</subject><subject>gigabit communications</subject><subject>hybrid communication</subject><subject>Laboratories</subject><subject>Links</subject><subject>long-range communications</subject><subject>Military applications</subject><subject>Military communication</subject><subject>Military communications</subject><subject>Mobile communication</subject><subject>Networks</subject><subject>Optical communication</subject><subject>Optical fiber networks</subject><subject>Optical propagation</subject><subject>optical turbulence compensation</subject><subject>Radio frequencies</subject><subject>Radio frequency</subject><subject>radio-frequency (RF) communications</subject><subject>Robustness</subject><subject>Spine</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU9LAzEQxYMoWKtfQC-LB9HD1kyyye4cy2KtUqgUPYdNNgtb9k9Ntod-e1NbPHjQywwMv_eYxyPkGugEgOLj69tqmU8YpRgGJCjxhIxAiCxmTMhTMqIUshgZ4Dm58H5NKeVC8hF5mO-0q8touRlqUzTRahZNa6d719ko79t224XzUPedvyRnVdF4e3XcY_Ixe3rP5_Fi-fySTxex4QhDrLXRGqRJTWk18qTkjGGlhQBmMUVbaagMLzirDEgrSyOLVCJCeN3QBAUfk7uD78b1n1vrB9XW3timKTrbb73iiUAhaRbA-z9BkCkwwTPg_6M0PAkgAAN6-wtd91vXhcQqE1kmGE_TALEDZFzvvbOV2ri6LdwuOKl9Ieq7ELUvRB0LCaKbg6i21v4IEuSYhDRf2fSEfg</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Stotts, Larry B.</creator><creator>Stadler, Brian</creator><creator>Young, David W.</creator><creator>Andrews, Larry C.</creator><creator>Cherry, Paul C.</creator><creator>Foshee, James J.</creator><creator>Kolodzy, Paul J.</creator><creator>McIntire, William K.</creator><creator>Northcott, Malcolm</creator><creator>Phillips, Ronald L.</creator><creator>Pike, H. Alan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090601</creationdate><title>Hybrid Optical RF Airborne Communications</title><author>Stotts, Larry B. ; Stadler, Brian ; Young, David W. ; Andrews, Larry C. ; Cherry, Paul C. ; Foshee, James J. ; Kolodzy, Paul J. ; McIntire, William K. ; Northcott, Malcolm ; Phillips, Ronald L. ; Pike, H. Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-bbcbb16c7cdeb934d3229fb5512e979efb1fc3a32fc16e6dc6a76991009c04953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aircraft components</topic><topic>Communication system field trials</topic><topic>Communities</topic><topic>Degradation</topic><topic>Dynamic range</topic><topic>free-space optical communications</topic><topic>gigabit communications</topic><topic>hybrid communication</topic><topic>Laboratories</topic><topic>Links</topic><topic>long-range communications</topic><topic>Military applications</topic><topic>Military communication</topic><topic>Military communications</topic><topic>Mobile communication</topic><topic>Networks</topic><topic>Optical communication</topic><topic>Optical fiber networks</topic><topic>Optical propagation</topic><topic>optical turbulence compensation</topic><topic>Radio frequencies</topic><topic>Radio frequency</topic><topic>radio-frequency (RF) communications</topic><topic>Robustness</topic><topic>Spine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stotts, Larry B.</creatorcontrib><creatorcontrib>Stadler, Brian</creatorcontrib><creatorcontrib>Young, David W.</creatorcontrib><creatorcontrib>Andrews, Larry C.</creatorcontrib><creatorcontrib>Cherry, Paul C.</creatorcontrib><creatorcontrib>Foshee, James J.</creatorcontrib><creatorcontrib>Kolodzy, Paul J.</creatorcontrib><creatorcontrib>McIntire, William K.</creatorcontrib><creatorcontrib>Northcott, Malcolm</creatorcontrib><creatorcontrib>Phillips, Ronald L.</creatorcontrib><creatorcontrib>Pike, H. Alan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stotts, Larry B.</au><au>Stadler, Brian</au><au>Young, David W.</au><au>Andrews, Larry C.</au><au>Cherry, Paul C.</au><au>Foshee, James J.</au><au>Kolodzy, Paul J.</au><au>McIntire, William K.</au><au>Northcott, Malcolm</au><au>Phillips, Ronald L.</au><au>Pike, H. Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Optical RF Airborne Communications</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>97</volume><issue>6</issue><spage>1109</spage><epage>1127</epage><pages>1109-1127</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>The use of hybrid free-space optical (FSO)/radio-frequency (RF) links to provide robust, high-throughput communications, fixed infrastructure links, and their associated networks have been thoroughly investigated for both commercial and military applications. The extension of this paradigm to mobile, long-range networks has long been a desire by the military communications community for multigigabit mobile backbone networks. The FSO communications subsystem has historically been the primary limitation. The challenge has been addressing the compensation of propagation effects and dynamic range of the received optical signal. This paper will address the various technologies required to compensate for the effects referenced above. We will outline the effects FSO and RF links experience and how we overcome these degradations. Results from field experiments conducted, including those from the Air Force Research Laboratory Integrated RF/Optical Networked Tactical Targeting Networking Technologies (IRON-T2) program, will be presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2009.2014969</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 2009-06, Vol.97 (6), p.1109-1127 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_proquest_miscellaneous_1022911519 |
source | IEEE Electronic Library (IEL) |
subjects | Aircraft components Communication system field trials Communities Degradation Dynamic range free-space optical communications gigabit communications hybrid communication Laboratories Links long-range communications Military applications Military communication Military communications Mobile communication Networks Optical communication Optical fiber networks Optical propagation optical turbulence compensation Radio frequencies Radio frequency radio-frequency (RF) communications Robustness Spine |
title | Hybrid Optical RF Airborne Communications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Optical%20RF%20Airborne%20Communications&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Stotts,%20Larry%20B.&rft.date=2009-06-01&rft.volume=97&rft.issue=6&rft.spage=1109&rft.epage=1127&rft.pages=1109-1127&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2009.2014969&rft_dat=%3Cproquest_RIE%3E2303976721%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858852377&rft_id=info:pmid/&rft_ieee_id=4939408&rfr_iscdi=true |