3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy

Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2010-06, Vol.10 (1), p.012120-012120
Hauptverfasser: Wijerathne, M L L, Hori, Muneo, Sakaguchi, Hide, Oguni, Kenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 012120
container_issue 1
container_start_page 012120
container_title IOP conference series. Materials Science and Engineering
container_volume 10
creator Wijerathne, M L L
Hori, Muneo
Sakaguchi, Hide
Oguni, Kenji
description Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.
doi_str_mv 10.1088/1757-899X/10/1/012120
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022906584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022906584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-ab51a22969e862ddd4e689ec5362973f9a2e542ba31080c1b28cb47db7a030f33</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI4-ghBw48LaJG3aZCnjLwy4UMFdSNPUydg2NWnVeXszVlRkcHXD4Tvn3hwADjE6xYixGOc0jxjnjzFGMY4RJpigLTD51rd_vXfBnvdLhLI8TdEE3CXnsFy1sjEKetMMteyNbaGtoHJSPcPO2U4-jaJpoX7vg2xdZ52WNfQLG5g3-aphbfqF7Z3p_Gof7FSy9vrga07Bw-XF_ew6mt9e3czO5pGiiPaRLCiWhPCMa5aRsixTnTGuFU0ywvOk4pJompJCJuGXSOGCMFWkeVnkEiWoSpIpOB5zw5Evg_a9aIxXuq5lq-3gBUYhHWWUpQE9-oMu7eDacJ0gNMOEcpzjQNGRUs5673QlOmca6VYhSqyrFusaxbrGT0WMVQffyegztvuxbEJFV1YBRxvwfzd8AHE6jas</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561259171</pqid></control><display><type>article</type><title>3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy</title><source>IOP Publishing Free Content</source><creator>Wijerathne, M L L ; Hori, Muneo ; Sakaguchi, Hide ; Oguni, Kenji</creator><creatorcontrib>Wijerathne, M L L ; Hori, Muneo ; Sakaguchi, Hide ; Oguni, Kenji</creatorcontrib><description>Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.</description><identifier>ISSN: 1757-899X</identifier><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/10/1/012120</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Amplitudes ; Calculi ; Crack propagation ; Distributed memory ; Dynamics ; Finite element method ; Fracture mechanics ; Fragmentation ; Kidney stones ; Lithotripsy ; Mathematical models ; Propagation ; Shock wave propagation ; Shock waves ; Stone ; Stress waves ; Three dimensional ; Three dimensional models</subject><ispartof>IOP conference series. Materials Science and Engineering, 2010-06, Vol.10 (1), p.012120-012120</ispartof><rights>Copyright IOP Publishing Jun 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-ab51a22969e862ddd4e689ec5362973f9a2e542ba31080c1b28cb47db7a030f33</citedby><cites>FETCH-LOGICAL-c505t-ab51a22969e862ddd4e689ec5362973f9a2e542ba31080c1b28cb47db7a030f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/10/1/012120/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,1547,27605,27901,27902,53879,53906</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/1757-899X/10/1/012120$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Wijerathne, M L L</creatorcontrib><creatorcontrib>Hori, Muneo</creatorcontrib><creatorcontrib>Sakaguchi, Hide</creatorcontrib><creatorcontrib>Oguni, Kenji</creatorcontrib><title>3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy</title><title>IOP conference series. Materials Science and Engineering</title><description>Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.</description><subject>Amplitudes</subject><subject>Calculi</subject><subject>Crack propagation</subject><subject>Distributed memory</subject><subject>Dynamics</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Fragmentation</subject><subject>Kidney stones</subject><subject>Lithotripsy</subject><subject>Mathematical models</subject><subject>Propagation</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Stone</subject><subject>Stress waves</subject><subject>Three dimensional</subject><subject>Three dimensional models</subject><issn>1757-899X</issn><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KxDAUhYMoOI4-ghBw48LaJG3aZCnjLwy4UMFdSNPUydg2NWnVeXszVlRkcHXD4Tvn3hwADjE6xYixGOc0jxjnjzFGMY4RJpigLTD51rd_vXfBnvdLhLI8TdEE3CXnsFy1sjEKetMMteyNbaGtoHJSPcPO2U4-jaJpoX7vg2xdZ52WNfQLG5g3-aphbfqF7Z3p_Gof7FSy9vrga07Bw-XF_ew6mt9e3czO5pGiiPaRLCiWhPCMa5aRsixTnTGuFU0ywvOk4pJompJCJuGXSOGCMFWkeVnkEiWoSpIpOB5zw5Evg_a9aIxXuq5lq-3gBUYhHWWUpQE9-oMu7eDacJ0gNMOEcpzjQNGRUs5673QlOmca6VYhSqyrFusaxbrGT0WMVQffyegztvuxbEJFV1YBRxvwfzd8AHE6jas</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Wijerathne, M L L</creator><creator>Hori, Muneo</creator><creator>Sakaguchi, Hide</creator><creator>Oguni, Kenji</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100601</creationdate><title>3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy</title><author>Wijerathne, M L L ; Hori, Muneo ; Sakaguchi, Hide ; Oguni, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-ab51a22969e862ddd4e689ec5362973f9a2e542ba31080c1b28cb47db7a030f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amplitudes</topic><topic>Calculi</topic><topic>Crack propagation</topic><topic>Distributed memory</topic><topic>Dynamics</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Fragmentation</topic><topic>Kidney stones</topic><topic>Lithotripsy</topic><topic>Mathematical models</topic><topic>Propagation</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Stone</topic><topic>Stress waves</topic><topic>Three dimensional</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wijerathne, M L L</creatorcontrib><creatorcontrib>Hori, Muneo</creatorcontrib><creatorcontrib>Sakaguchi, Hide</creatorcontrib><creatorcontrib>Oguni, Kenji</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wijerathne, M L L</au><au>Hori, Muneo</au><au>Sakaguchi, Hide</au><au>Oguni, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>10</volume><issue>1</issue><spage>012120</spage><epage>012120</epage><pages>012120-012120</pages><issn>1757-899X</issn><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/10/1/012120</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1757-899X
ispartof IOP conference series. Materials Science and Engineering, 2010-06, Vol.10 (1), p.012120-012120
issn 1757-899X
1757-8981
1757-899X
language eng
recordid cdi_proquest_miscellaneous_1022906584
source IOP Publishing Free Content
subjects Amplitudes
Calculi
Crack propagation
Distributed memory
Dynamics
Finite element method
Fracture mechanics
Fragmentation
Kidney stones
Lithotripsy
Mathematical models
Propagation
Shock wave propagation
Shock waves
Stone
Stress waves
Three dimensional
Three dimensional models
title 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20dynamic%20simulation%20of%20crack%20propagation%20in%20extracorporeal%20shock%20wave%20lithotripsy&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Wijerathne,%20M%20L%20L&rft.date=2010-06-01&rft.volume=10&rft.issue=1&rft.spage=012120&rft.epage=012120&rft.pages=012120-012120&rft.issn=1757-899X&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/10/1/012120&rft_dat=%3Cproquest_O3W%3E1022906584%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561259171&rft_id=info:pmid/&rfr_iscdi=true