3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy
Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic p...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2010-06, Vol.10 (1), p.012120-012120 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 012120 |
---|---|
container_issue | 1 |
container_start_page | 012120 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 10 |
creator | Wijerathne, M L L Hori, Muneo Sakaguchi, Hide Oguni, Kenji |
description | Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation. |
doi_str_mv | 10.1088/1757-899X/10/1/012120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022906584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022906584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-ab51a22969e862ddd4e689ec5362973f9a2e542ba31080c1b28cb47db7a030f33</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI4-ghBw48LaJG3aZCnjLwy4UMFdSNPUydg2NWnVeXszVlRkcHXD4Tvn3hwADjE6xYixGOc0jxjnjzFGMY4RJpigLTD51rd_vXfBnvdLhLI8TdEE3CXnsFy1sjEKetMMteyNbaGtoHJSPcPO2U4-jaJpoX7vg2xdZ52WNfQLG5g3-aphbfqF7Z3p_Gof7FSy9vrga07Bw-XF_ew6mt9e3czO5pGiiPaRLCiWhPCMa5aRsixTnTGuFU0ywvOk4pJompJCJuGXSOGCMFWkeVnkEiWoSpIpOB5zw5Evg_a9aIxXuq5lq-3gBUYhHWWUpQE9-oMu7eDacJ0gNMOEcpzjQNGRUs5673QlOmca6VYhSqyrFusaxbrGT0WMVQffyegztvuxbEJFV1YBRxvwfzd8AHE6jas</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561259171</pqid></control><display><type>article</type><title>3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy</title><source>IOP Publishing Free Content</source><creator>Wijerathne, M L L ; Hori, Muneo ; Sakaguchi, Hide ; Oguni, Kenji</creator><creatorcontrib>Wijerathne, M L L ; Hori, Muneo ; Sakaguchi, Hide ; Oguni, Kenji</creatorcontrib><description>Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.</description><identifier>ISSN: 1757-899X</identifier><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/10/1/012120</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Amplitudes ; Calculi ; Crack propagation ; Distributed memory ; Dynamics ; Finite element method ; Fracture mechanics ; Fragmentation ; Kidney stones ; Lithotripsy ; Mathematical models ; Propagation ; Shock wave propagation ; Shock waves ; Stone ; Stress waves ; Three dimensional ; Three dimensional models</subject><ispartof>IOP conference series. Materials Science and Engineering, 2010-06, Vol.10 (1), p.012120-012120</ispartof><rights>Copyright IOP Publishing Jun 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-ab51a22969e862ddd4e689ec5362973f9a2e542ba31080c1b28cb47db7a030f33</citedby><cites>FETCH-LOGICAL-c505t-ab51a22969e862ddd4e689ec5362973f9a2e542ba31080c1b28cb47db7a030f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/10/1/012120/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,1547,27605,27901,27902,53879,53906</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/1757-899X/10/1/012120$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Wijerathne, M L L</creatorcontrib><creatorcontrib>Hori, Muneo</creatorcontrib><creatorcontrib>Sakaguchi, Hide</creatorcontrib><creatorcontrib>Oguni, Kenji</creatorcontrib><title>3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy</title><title>IOP conference series. Materials Science and Engineering</title><description>Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.</description><subject>Amplitudes</subject><subject>Calculi</subject><subject>Crack propagation</subject><subject>Distributed memory</subject><subject>Dynamics</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Fragmentation</subject><subject>Kidney stones</subject><subject>Lithotripsy</subject><subject>Mathematical models</subject><subject>Propagation</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Stone</subject><subject>Stress waves</subject><subject>Three dimensional</subject><subject>Three dimensional models</subject><issn>1757-899X</issn><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KxDAUhYMoOI4-ghBw48LaJG3aZCnjLwy4UMFdSNPUydg2NWnVeXszVlRkcHXD4Tvn3hwADjE6xYixGOc0jxjnjzFGMY4RJpigLTD51rd_vXfBnvdLhLI8TdEE3CXnsFy1sjEKetMMteyNbaGtoHJSPcPO2U4-jaJpoX7vg2xdZ52WNfQLG5g3-aphbfqF7Z3p_Gof7FSy9vrga07Bw-XF_ew6mt9e3czO5pGiiPaRLCiWhPCMa5aRsixTnTGuFU0ywvOk4pJompJCJuGXSOGCMFWkeVnkEiWoSpIpOB5zw5Evg_a9aIxXuq5lq-3gBUYhHWWUpQE9-oMu7eDacJ0gNMOEcpzjQNGRUs5673QlOmca6VYhSqyrFusaxbrGT0WMVQffyegztvuxbEJFV1YBRxvwfzd8AHE6jas</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Wijerathne, M L L</creator><creator>Hori, Muneo</creator><creator>Sakaguchi, Hide</creator><creator>Oguni, Kenji</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100601</creationdate><title>3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy</title><author>Wijerathne, M L L ; Hori, Muneo ; Sakaguchi, Hide ; Oguni, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-ab51a22969e862ddd4e689ec5362973f9a2e542ba31080c1b28cb47db7a030f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amplitudes</topic><topic>Calculi</topic><topic>Crack propagation</topic><topic>Distributed memory</topic><topic>Dynamics</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Fragmentation</topic><topic>Kidney stones</topic><topic>Lithotripsy</topic><topic>Mathematical models</topic><topic>Propagation</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Stone</topic><topic>Stress waves</topic><topic>Three dimensional</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wijerathne, M L L</creatorcontrib><creatorcontrib>Hori, Muneo</creatorcontrib><creatorcontrib>Sakaguchi, Hide</creatorcontrib><creatorcontrib>Oguni, Kenji</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wijerathne, M L L</au><au>Hori, Muneo</au><au>Sakaguchi, Hide</au><au>Oguni, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>10</volume><issue>1</issue><spage>012120</spage><epage>012120</epage><pages>012120-012120</pages><issn>1757-899X</issn><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/10/1/012120</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1757-899X |
ispartof | IOP conference series. Materials Science and Engineering, 2010-06, Vol.10 (1), p.012120-012120 |
issn | 1757-899X 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_miscellaneous_1022906584 |
source | IOP Publishing Free Content |
subjects | Amplitudes Calculi Crack propagation Distributed memory Dynamics Finite element method Fracture mechanics Fragmentation Kidney stones Lithotripsy Mathematical models Propagation Shock wave propagation Shock waves Stone Stress waves Three dimensional Three dimensional models |
title | 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20dynamic%20simulation%20of%20crack%20propagation%20in%20extracorporeal%20shock%20wave%20lithotripsy&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Wijerathne,%20M%20L%20L&rft.date=2010-06-01&rft.volume=10&rft.issue=1&rft.spage=012120&rft.epage=012120&rft.pages=012120-012120&rft.issn=1757-899X&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/10/1/012120&rft_dat=%3Cproquest_O3W%3E1022906584%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561259171&rft_id=info:pmid/&rfr_iscdi=true |