Convergence of Recognition, Mining, and Synthesis Workloads and Its Implications

This paper examines the growing need for a general-purpose ldquoanalytics enginerdquo that can enable next-generation processing platforms to effectively model events, objects, and concepts based on end-user input, and accessible datasets, along with an ability to iteratively refine the model in rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2008-05, Vol.96 (5), p.790-807
Hauptverfasser: Chen, Yen-Kuang, Chhugani, Jatin, Dubey, Pradeep, Hughes, Christopher J., Kim, Daehyun, Kumar, Sanjeev, Lee, Victor W., Nguyen, Anthony D., Smelyanskiy, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 807
container_issue 5
container_start_page 790
container_title Proceedings of the IEEE
container_volume 96
creator Chen, Yen-Kuang
Chhugani, Jatin
Dubey, Pradeep
Hughes, Christopher J.
Kim, Daehyun
Kumar, Sanjeev
Lee, Victor W.
Nguyen, Anthony D.
Smelyanskiy, Mikhail
description This paper examines the growing need for a general-purpose ldquoanalytics enginerdquo that can enable next-generation processing platforms to effectively model events, objects, and concepts based on end-user input, and accessible datasets, along with an ability to iteratively refine the model in real-time. We find such processing needs at the heart of many emerging applications and services. This processing is further decomposed in terms of an integration of three fundamental compute capabilities-recognition, mining, and synthesis (RMS). The set of RMS workloads is examined next in terms of usage, mathematical models, numerical algorithms, and underlying data structures. Our analysis suggests a workload convergence that is analyzed next for its platform implications. In summary, a diverse set of emerging RMS applications from market segments like graphics, gaming, media-mining, unstructured information management, financial analytics, and interactive virtual communities presents a relatively focused, highly overlapping set of common platform challenges. A general-purpose processing platform designed to address these challenges has the potential for significantly enhancing users' experience and programmer productivity.
doi_str_mv 10.1109/JPROC.2008.917729
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022905320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4479863</ieee_id><sourcerecordid>2325751431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-f28c41c07e02b058ec2814f0d73aebcc92919df2e16c3acde8bd41fc11ed4e563</originalsourceid><addsrcrecordid>eNqF0cFv0zAUBnALgUQZ_AGIS8SB7bCU954dxz6iaoyioU0DxDFKnZfikdolTpH2389dEQcO28mS9fs-Wf6EeI0wRwT7_vPV9eViTgBmbrGuyT4RM6wqUxJV-qmYAaApLaF9Ll6kdAMAstJyJq4WMfzhcc3BcRH74ppdXAc_-RhOiy8--LA-LdrQFV9vw_STk0_Fjzj-GmLbpfv75ZSK5WY7eNfuQ-mleNa3Q-JXf88j8f3j2bfFp_Li8ny5-HBROkU4lT0Zp9BBzUArqAw7Mqh66GrZ8so5SxZt1xOjdrJ1HZtVp7B3iNwpzk8_EseH3u0Yf-84Tc3GJ8fD0AaOu9RYkFqClJjluwelVAo0yjrDkwch6hqlJEX6cQpEFipJkOnb_-hN3I0h_01jNBkyWsuM8IDcGFMauW-2o9-0421uavYDN_cDN_uBm8PAOfPmkPHM_M8rVVuTG-8A_B2gWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862828663</pqid></control><display><type>article</type><title>Convergence of Recognition, Mining, and Synthesis Workloads and Its Implications</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yen-Kuang ; Chhugani, Jatin ; Dubey, Pradeep ; Hughes, Christopher J. ; Kim, Daehyun ; Kumar, Sanjeev ; Lee, Victor W. ; Nguyen, Anthony D. ; Smelyanskiy, Mikhail</creator><creatorcontrib>Chen, Yen-Kuang ; Chhugani, Jatin ; Dubey, Pradeep ; Hughes, Christopher J. ; Kim, Daehyun ; Kumar, Sanjeev ; Lee, Victor W. ; Nguyen, Anthony D. ; Smelyanskiy, Mikhail</creatorcontrib><description>This paper examines the growing need for a general-purpose ldquoanalytics enginerdquo that can enable next-generation processing platforms to effectively model events, objects, and concepts based on end-user input, and accessible datasets, along with an ability to iteratively refine the model in real-time. We find such processing needs at the heart of many emerging applications and services. This processing is further decomposed in terms of an integration of three fundamental compute capabilities-recognition, mining, and synthesis (RMS). The set of RMS workloads is examined next in terms of usage, mathematical models, numerical algorithms, and underlying data structures. Our analysis suggests a workload convergence that is analyzed next for its platform implications. In summary, a diverse set of emerging RMS applications from market segments like graphics, gaming, media-mining, unstructured information management, financial analytics, and interactive virtual communities presents a relatively focused, highly overlapping set of common platform challenges. A general-purpose processing platform designed to address these challenges has the potential for significantly enhancing users' experience and programmer productivity.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2008.917729</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Convergence ; Data structures ; emerging applications ; Graphics ; Heart ; Information analysis ; Information management ; Markets ; Mathematical model ; Mathematical models ; Mining ; parallel architectures ; Platforms ; Process design ; Productivity ; Programming profession ; Studies ; Synthesis ; Workload</subject><ispartof>Proceedings of the IEEE, 2008-05, Vol.96 (5), p.790-807</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-f28c41c07e02b058ec2814f0d73aebcc92919df2e16c3acde8bd41fc11ed4e563</citedby><cites>FETCH-LOGICAL-c421t-f28c41c07e02b058ec2814f0d73aebcc92919df2e16c3acde8bd41fc11ed4e563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4479863$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4479863$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yen-Kuang</creatorcontrib><creatorcontrib>Chhugani, Jatin</creatorcontrib><creatorcontrib>Dubey, Pradeep</creatorcontrib><creatorcontrib>Hughes, Christopher J.</creatorcontrib><creatorcontrib>Kim, Daehyun</creatorcontrib><creatorcontrib>Kumar, Sanjeev</creatorcontrib><creatorcontrib>Lee, Victor W.</creatorcontrib><creatorcontrib>Nguyen, Anthony D.</creatorcontrib><creatorcontrib>Smelyanskiy, Mikhail</creatorcontrib><title>Convergence of Recognition, Mining, and Synthesis Workloads and Its Implications</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>This paper examines the growing need for a general-purpose ldquoanalytics enginerdquo that can enable next-generation processing platforms to effectively model events, objects, and concepts based on end-user input, and accessible datasets, along with an ability to iteratively refine the model in real-time. We find such processing needs at the heart of many emerging applications and services. This processing is further decomposed in terms of an integration of three fundamental compute capabilities-recognition, mining, and synthesis (RMS). The set of RMS workloads is examined next in terms of usage, mathematical models, numerical algorithms, and underlying data structures. Our analysis suggests a workload convergence that is analyzed next for its platform implications. In summary, a diverse set of emerging RMS applications from market segments like graphics, gaming, media-mining, unstructured information management, financial analytics, and interactive virtual communities presents a relatively focused, highly overlapping set of common platform challenges. A general-purpose processing platform designed to address these challenges has the potential for significantly enhancing users' experience and programmer productivity.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Data structures</subject><subject>emerging applications</subject><subject>Graphics</subject><subject>Heart</subject><subject>Information analysis</subject><subject>Information management</subject><subject>Markets</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Mining</subject><subject>parallel architectures</subject><subject>Platforms</subject><subject>Process design</subject><subject>Productivity</subject><subject>Programming profession</subject><subject>Studies</subject><subject>Synthesis</subject><subject>Workload</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0cFv0zAUBnALgUQZ_AGIS8SB7bCU954dxz6iaoyioU0DxDFKnZfikdolTpH2389dEQcO28mS9fs-Wf6EeI0wRwT7_vPV9eViTgBmbrGuyT4RM6wqUxJV-qmYAaApLaF9Ll6kdAMAstJyJq4WMfzhcc3BcRH74ppdXAc_-RhOiy8--LA-LdrQFV9vw_STk0_Fjzj-GmLbpfv75ZSK5WY7eNfuQ-mleNa3Q-JXf88j8f3j2bfFp_Li8ny5-HBROkU4lT0Zp9BBzUArqAw7Mqh66GrZ8so5SxZt1xOjdrJ1HZtVp7B3iNwpzk8_EseH3u0Yf-84Tc3GJ8fD0AaOu9RYkFqClJjluwelVAo0yjrDkwch6hqlJEX6cQpEFipJkOnb_-hN3I0h_01jNBkyWsuM8IDcGFMauW-2o9-0421uavYDN_cDN_uBm8PAOfPmkPHM_M8rVVuTG-8A_B2gWA</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Chen, Yen-Kuang</creator><creator>Chhugani, Jatin</creator><creator>Dubey, Pradeep</creator><creator>Hughes, Christopher J.</creator><creator>Kim, Daehyun</creator><creator>Kumar, Sanjeev</creator><creator>Lee, Victor W.</creator><creator>Nguyen, Anthony D.</creator><creator>Smelyanskiy, Mikhail</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080501</creationdate><title>Convergence of Recognition, Mining, and Synthesis Workloads and Its Implications</title><author>Chen, Yen-Kuang ; Chhugani, Jatin ; Dubey, Pradeep ; Hughes, Christopher J. ; Kim, Daehyun ; Kumar, Sanjeev ; Lee, Victor W. ; Nguyen, Anthony D. ; Smelyanskiy, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-f28c41c07e02b058ec2814f0d73aebcc92919df2e16c3acde8bd41fc11ed4e563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Data structures</topic><topic>emerging applications</topic><topic>Graphics</topic><topic>Heart</topic><topic>Information analysis</topic><topic>Information management</topic><topic>Markets</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Mining</topic><topic>parallel architectures</topic><topic>Platforms</topic><topic>Process design</topic><topic>Productivity</topic><topic>Programming profession</topic><topic>Studies</topic><topic>Synthesis</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yen-Kuang</creatorcontrib><creatorcontrib>Chhugani, Jatin</creatorcontrib><creatorcontrib>Dubey, Pradeep</creatorcontrib><creatorcontrib>Hughes, Christopher J.</creatorcontrib><creatorcontrib>Kim, Daehyun</creatorcontrib><creatorcontrib>Kumar, Sanjeev</creatorcontrib><creatorcontrib>Lee, Victor W.</creatorcontrib><creatorcontrib>Nguyen, Anthony D.</creatorcontrib><creatorcontrib>Smelyanskiy, Mikhail</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yen-Kuang</au><au>Chhugani, Jatin</au><au>Dubey, Pradeep</au><au>Hughes, Christopher J.</au><au>Kim, Daehyun</au><au>Kumar, Sanjeev</au><au>Lee, Victor W.</au><au>Nguyen, Anthony D.</au><au>Smelyanskiy, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of Recognition, Mining, and Synthesis Workloads and Its Implications</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>96</volume><issue>5</issue><spage>790</spage><epage>807</epage><pages>790-807</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>This paper examines the growing need for a general-purpose ldquoanalytics enginerdquo that can enable next-generation processing platforms to effectively model events, objects, and concepts based on end-user input, and accessible datasets, along with an ability to iteratively refine the model in real-time. We find such processing needs at the heart of many emerging applications and services. This processing is further decomposed in terms of an integration of three fundamental compute capabilities-recognition, mining, and synthesis (RMS). The set of RMS workloads is examined next in terms of usage, mathematical models, numerical algorithms, and underlying data structures. Our analysis suggests a workload convergence that is analyzed next for its platform implications. In summary, a diverse set of emerging RMS applications from market segments like graphics, gaming, media-mining, unstructured information management, financial analytics, and interactive virtual communities presents a relatively focused, highly overlapping set of common platform challenges. A general-purpose processing platform designed to address these challenges has the potential for significantly enhancing users' experience and programmer productivity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2008.917729</doi><tpages>18</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2008-05, Vol.96 (5), p.790-807
issn 0018-9219
1558-2256
language eng
recordid cdi_proquest_miscellaneous_1022905320
source IEEE Electronic Library (IEL)
subjects Algorithms
Convergence
Data structures
emerging applications
Graphics
Heart
Information analysis
Information management
Markets
Mathematical model
Mathematical models
Mining
parallel architectures
Platforms
Process design
Productivity
Programming profession
Studies
Synthesis
Workload
title Convergence of Recognition, Mining, and Synthesis Workloads and Its Implications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20Recognition,%20Mining,%20and%20Synthesis%20Workloads%20and%20Its%20Implications&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Chen,%20Yen-Kuang&rft.date=2008-05-01&rft.volume=96&rft.issue=5&rft.spage=790&rft.epage=807&rft.pages=790-807&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2008.917729&rft_dat=%3Cproquest_RIE%3E2325751431%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862828663&rft_id=info:pmid/&rft_ieee_id=4479863&rfr_iscdi=true