Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity

A theoretical and experimental study of a multiwavelength fiber-ring laser that incorporates a semiconductor optical amplifier (SOA) in the laser cavity as a phase modulator to suppress the homogeneous line broadening is presented. The analysis reveals that the phase shift introduced by the SOA-base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2005-08, Vol.23 (8), p.2484-2490
Hauptverfasser: Jian Yao, Jian Yao, Jianping Yao, Jianping Yao, Zhichao Deng, Zhichao Deng, Jian Liu, Jian Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2490
container_issue 8
container_start_page 2484
container_title Journal of lightwave technology
container_volume 23
creator Jian Yao, Jian Yao
Jianping Yao, Jianping Yao
Zhichao Deng, Zhichao Deng
Jian Liu, Jian Liu
description A theoretical and experimental study of a multiwavelength fiber-ring laser that incorporates a semiconductor optical amplifier (SOA) in the laser cavity as a phase modulator to suppress the homogeneous line broadening is presented. The analysis reveals that the phase shift introduced by the SOA-based phase modulator is more significant than that formed using a LiNbO/sub 3/ phase modulator, which leads to a better suppression of the homogeneous line broadening. Multiwavelength lasing with small wavelength spacing and improved stability at room temperature is achieved. A fiber-ring laser based on the proposed approach is implemented. Stable multiwavelength operation with up to 26 wavelengths and wavelength spacing as small as 0.19 nm at room temperature is demonstrated.
doi_str_mv 10.1109/JLT.2005.850818
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022898764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1498953</ieee_id><sourcerecordid>28063230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-d096bb9d7d8009416ff0894cc91df99da117cf15187b4528b8adee6a3baa67c3</originalsourceid><addsrcrecordid>eNp9kU2L2zAQhkVpoWnacw-9iEI_Ls7qw7Kl47L0Y0tgD83djOVxosW2XEnOsj-g_7sKCSz0sKc5zPO8w_AS8p6zDefMXP3a7jaCMbXRimmuX5AVV0oXQnD5kqxYLWWha1G-Jm9ivGeMl6WuV-Tv7XTEmNwekvMT9T0N3o9FwnHGAGkJSMdlSO4BjjjgtE8H2rsWQxHctKcDRAw0HSBRN1kfZp8djBQm-vvuumjzuqPzIQ86-m4ZIPmQyWzgxbVwdOnxLXnVwxDx3WWuye77t93Nz2J79-P25npbWMVNKjpmqrY1Xd1pxkzJq75n2pTWGt71xnTAeW17rriu21IJ3WroECuQLUBVW7kmX86xc_B_lvx2M7pocRhgQr_ERptKSFlplcnPz5JCs0oKyTL49VmQMyG00XVVZvTjf-i9X8KU_210ZXjmcuKaXJ0hG3yMAftmDm6E8JiTmlPPTe65OfXcnHvOxqdLLEQLQx9gsi4-aTVTqtSn8x_OnEPEp3VptFFS_gNFRbKV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869122832</pqid></control><display><type>article</type><title>Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity</title><source>IEEE Electronic Library (IEL)</source><creator>Jian Yao, Jian Yao ; Jianping Yao, Jianping Yao ; Zhichao Deng, Zhichao Deng ; Jian Liu, Jian Liu</creator><creatorcontrib>Jian Yao, Jian Yao ; Jianping Yao, Jianping Yao ; Zhichao Deng, Zhichao Deng ; Jian Liu, Jian Liu</creatorcontrib><description>A theoretical and experimental study of a multiwavelength fiber-ring laser that incorporates a semiconductor optical amplifier (SOA) in the laser cavity as a phase modulator to suppress the homogeneous line broadening is presented. The analysis reveals that the phase shift introduced by the SOA-based phase modulator is more significant than that formed using a LiNbO/sub 3/ phase modulator, which leads to a better suppression of the homogeneous line broadening. Multiwavelength lasing with small wavelength spacing and improved stability at room temperature is achieved. A fiber-ring laser based on the proposed approach is implemented. Stable multiwavelength operation with up to 26 wavelengths and wavelength spacing as small as 0.19 nm at room temperature is demonstrated.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2005.850818</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit properties ; Electric, optical and optoelectronic circuits ; Electronics ; Erbium-doped fiber (EDF) ; Erbium-doped fiber lasers ; Exact sciences and technology ; fiber laser ; Fiber lasers ; homogeneous line broadening ; Information, signal and communications theory ; Integrated optics. Optical fibers and wave guides ; Laser cavities ; Laser stability ; Laser theory ; Lasers ; Lasing ; Line broadening ; Modulation, demodulation ; Modulators ; multiwavelength ; Optical and optoelectronic circuits ; Optical fiber communication ; Optical fiber sensors ; Phase modulation ; Semiconductor lasers ; semiconductor optical amplifier (SOA) ; Semiconductor optical amplifiers ; Signal and communications theory ; Stability ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Temperature ; Transmission and modulation (techniques and equipments) ; Wavelengths</subject><ispartof>Journal of lightwave technology, 2005-08, Vol.23 (8), p.2484-2490</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-d096bb9d7d8009416ff0894cc91df99da117cf15187b4528b8adee6a3baa67c3</citedby><cites>FETCH-LOGICAL-c519t-d096bb9d7d8009416ff0894cc91df99da117cf15187b4528b8adee6a3baa67c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1498953$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1498953$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17055484$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jian Yao, Jian Yao</creatorcontrib><creatorcontrib>Jianping Yao, Jianping Yao</creatorcontrib><creatorcontrib>Zhichao Deng, Zhichao Deng</creatorcontrib><creatorcontrib>Jian Liu, Jian Liu</creatorcontrib><title>Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>A theoretical and experimental study of a multiwavelength fiber-ring laser that incorporates a semiconductor optical amplifier (SOA) in the laser cavity as a phase modulator to suppress the homogeneous line broadening is presented. The analysis reveals that the phase shift introduced by the SOA-based phase modulator is more significant than that formed using a LiNbO/sub 3/ phase modulator, which leads to a better suppression of the homogeneous line broadening. Multiwavelength lasing with small wavelength spacing and improved stability at room temperature is achieved. A fiber-ring laser based on the proposed approach is implemented. Stable multiwavelength operation with up to 26 wavelengths and wavelength spacing as small as 0.19 nm at room temperature is demonstrated.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Erbium-doped fiber (EDF)</subject><subject>Erbium-doped fiber lasers</subject><subject>Exact sciences and technology</subject><subject>fiber laser</subject><subject>Fiber lasers</subject><subject>homogeneous line broadening</subject><subject>Information, signal and communications theory</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Laser cavities</subject><subject>Laser stability</subject><subject>Laser theory</subject><subject>Lasers</subject><subject>Lasing</subject><subject>Line broadening</subject><subject>Modulation, demodulation</subject><subject>Modulators</subject><subject>multiwavelength</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical fiber communication</subject><subject>Optical fiber sensors</subject><subject>Phase modulation</subject><subject>Semiconductor lasers</subject><subject>semiconductor optical amplifier (SOA)</subject><subject>Semiconductor optical amplifiers</subject><subject>Signal and communications theory</subject><subject>Stability</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Temperature</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Wavelengths</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU2L2zAQhkVpoWnacw-9iEI_Ls7qw7Kl47L0Y0tgD83djOVxosW2XEnOsj-g_7sKCSz0sKc5zPO8w_AS8p6zDefMXP3a7jaCMbXRimmuX5AVV0oXQnD5kqxYLWWha1G-Jm9ivGeMl6WuV-Tv7XTEmNwekvMT9T0N3o9FwnHGAGkJSMdlSO4BjjjgtE8H2rsWQxHctKcDRAw0HSBRN1kfZp8djBQm-vvuumjzuqPzIQ86-m4ZIPmQyWzgxbVwdOnxLXnVwxDx3WWuye77t93Nz2J79-P25npbWMVNKjpmqrY1Xd1pxkzJq75n2pTWGt71xnTAeW17rriu21IJ3WroECuQLUBVW7kmX86xc_B_lvx2M7pocRhgQr_ERptKSFlplcnPz5JCs0oKyTL49VmQMyG00XVVZvTjf-i9X8KU_210ZXjmcuKaXJ0hG3yMAftmDm6E8JiTmlPPTe65OfXcnHvOxqdLLEQLQx9gsi4-aTVTqtSn8x_OnEPEp3VptFFS_gNFRbKV</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Jian Yao, Jian Yao</creator><creator>Jianping Yao, Jianping Yao</creator><creator>Zhichao Deng, Zhichao Deng</creator><creator>Jian Liu, Jian Liu</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20050801</creationdate><title>Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity</title><author>Jian Yao, Jian Yao ; Jianping Yao, Jianping Yao ; Zhichao Deng, Zhichao Deng ; Jian Liu, Jian Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-d096bb9d7d8009416ff0894cc91df99da117cf15187b4528b8adee6a3baa67c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Erbium-doped fiber (EDF)</topic><topic>Erbium-doped fiber lasers</topic><topic>Exact sciences and technology</topic><topic>fiber laser</topic><topic>Fiber lasers</topic><topic>homogeneous line broadening</topic><topic>Information, signal and communications theory</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Laser cavities</topic><topic>Laser stability</topic><topic>Laser theory</topic><topic>Lasers</topic><topic>Lasing</topic><topic>Line broadening</topic><topic>Modulation, demodulation</topic><topic>Modulators</topic><topic>multiwavelength</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical fiber communication</topic><topic>Optical fiber sensors</topic><topic>Phase modulation</topic><topic>Semiconductor lasers</topic><topic>semiconductor optical amplifier (SOA)</topic><topic>Semiconductor optical amplifiers</topic><topic>Signal and communications theory</topic><topic>Stability</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Temperature</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian Yao, Jian Yao</creatorcontrib><creatorcontrib>Jianping Yao, Jianping Yao</creatorcontrib><creatorcontrib>Zhichao Deng, Zhichao Deng</creatorcontrib><creatorcontrib>Jian Liu, Jian Liu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jian Yao, Jian Yao</au><au>Jianping Yao, Jianping Yao</au><au>Zhichao Deng, Zhichao Deng</au><au>Jian Liu, Jian Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2005-08-01</date><risdate>2005</risdate><volume>23</volume><issue>8</issue><spage>2484</spage><epage>2490</epage><pages>2484-2490</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A theoretical and experimental study of a multiwavelength fiber-ring laser that incorporates a semiconductor optical amplifier (SOA) in the laser cavity as a phase modulator to suppress the homogeneous line broadening is presented. The analysis reveals that the phase shift introduced by the SOA-based phase modulator is more significant than that formed using a LiNbO/sub 3/ phase modulator, which leads to a better suppression of the homogeneous line broadening. Multiwavelength lasing with small wavelength spacing and improved stability at room temperature is achieved. A fiber-ring laser based on the proposed approach is implemented. Stable multiwavelength operation with up to 26 wavelengths and wavelength spacing as small as 0.19 nm at room temperature is demonstrated.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JLT.2005.850818</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2005-08, Vol.23 (8), p.2484-2490
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_miscellaneous_1022898764
source IEEE Electronic Library (IEL)
subjects Applied sciences
Circuit properties
Electric, optical and optoelectronic circuits
Electronics
Erbium-doped fiber (EDF)
Erbium-doped fiber lasers
Exact sciences and technology
fiber laser
Fiber lasers
homogeneous line broadening
Information, signal and communications theory
Integrated optics. Optical fibers and wave guides
Laser cavities
Laser stability
Laser theory
Lasers
Lasing
Line broadening
Modulation, demodulation
Modulators
multiwavelength
Optical and optoelectronic circuits
Optical fiber communication
Optical fiber sensors
Phase modulation
Semiconductor lasers
semiconductor optical amplifier (SOA)
Semiconductor optical amplifiers
Signal and communications theory
Stability
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Temperature
Transmission and modulation (techniques and equipments)
Wavelengths
title Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20room-temperature%20multiwavelength%20fiber-ring%20laser%20that%20incorporates%20an%20SOA-based%20phase%20modulator%20in%20the%20laser%20cavity&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Jian%20Yao,%20Jian%20Yao&rft.date=2005-08-01&rft.volume=23&rft.issue=8&rft.spage=2484&rft.epage=2490&rft.pages=2484-2490&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2005.850818&rft_dat=%3Cproquest_RIE%3E28063230%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869122832&rft_id=info:pmid/&rft_ieee_id=1498953&rfr_iscdi=true