Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity
A theoretical and experimental study of a multiwavelength fiber-ring laser that incorporates a semiconductor optical amplifier (SOA) in the laser cavity as a phase modulator to suppress the homogeneous line broadening is presented. The analysis reveals that the phase shift introduced by the SOA-base...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2005-08, Vol.23 (8), p.2484-2490 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2490 |
---|---|
container_issue | 8 |
container_start_page | 2484 |
container_title | Journal of lightwave technology |
container_volume | 23 |
creator | Jian Yao, Jian Yao Jianping Yao, Jianping Yao Zhichao Deng, Zhichao Deng Jian Liu, Jian Liu |
description | A theoretical and experimental study of a multiwavelength fiber-ring laser that incorporates a semiconductor optical amplifier (SOA) in the laser cavity as a phase modulator to suppress the homogeneous line broadening is presented. The analysis reveals that the phase shift introduced by the SOA-based phase modulator is more significant than that formed using a LiNbO/sub 3/ phase modulator, which leads to a better suppression of the homogeneous line broadening. Multiwavelength lasing with small wavelength spacing and improved stability at room temperature is achieved. A fiber-ring laser based on the proposed approach is implemented. Stable multiwavelength operation with up to 26 wavelengths and wavelength spacing as small as 0.19 nm at room temperature is demonstrated. |
doi_str_mv | 10.1109/JLT.2005.850818 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022898764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1498953</ieee_id><sourcerecordid>28063230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-d096bb9d7d8009416ff0894cc91df99da117cf15187b4528b8adee6a3baa67c3</originalsourceid><addsrcrecordid>eNp9kU2L2zAQhkVpoWnacw-9iEI_Ls7qw7Kl47L0Y0tgD83djOVxosW2XEnOsj-g_7sKCSz0sKc5zPO8w_AS8p6zDefMXP3a7jaCMbXRimmuX5AVV0oXQnD5kqxYLWWha1G-Jm9ivGeMl6WuV-Tv7XTEmNwekvMT9T0N3o9FwnHGAGkJSMdlSO4BjjjgtE8H2rsWQxHctKcDRAw0HSBRN1kfZp8djBQm-vvuumjzuqPzIQ86-m4ZIPmQyWzgxbVwdOnxLXnVwxDx3WWuye77t93Nz2J79-P25npbWMVNKjpmqrY1Xd1pxkzJq75n2pTWGt71xnTAeW17rriu21IJ3WroECuQLUBVW7kmX86xc_B_lvx2M7pocRhgQr_ERptKSFlplcnPz5JCs0oKyTL49VmQMyG00XVVZvTjf-i9X8KU_210ZXjmcuKaXJ0hG3yMAftmDm6E8JiTmlPPTe65OfXcnHvOxqdLLEQLQx9gsi4-aTVTqtSn8x_OnEPEp3VptFFS_gNFRbKV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869122832</pqid></control><display><type>article</type><title>Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity</title><source>IEEE Electronic Library (IEL)</source><creator>Jian Yao, Jian Yao ; Jianping Yao, Jianping Yao ; Zhichao Deng, Zhichao Deng ; Jian Liu, Jian Liu</creator><creatorcontrib>Jian Yao, Jian Yao ; Jianping Yao, Jianping Yao ; Zhichao Deng, Zhichao Deng ; Jian Liu, Jian Liu</creatorcontrib><description>A theoretical and experimental study of a multiwavelength fiber-ring laser that incorporates a semiconductor optical amplifier (SOA) in the laser cavity as a phase modulator to suppress the homogeneous line broadening is presented. The analysis reveals that the phase shift introduced by the SOA-based phase modulator is more significant than that formed using a LiNbO/sub 3/ phase modulator, which leads to a better suppression of the homogeneous line broadening. Multiwavelength lasing with small wavelength spacing and improved stability at room temperature is achieved. A fiber-ring laser based on the proposed approach is implemented. Stable multiwavelength operation with up to 26 wavelengths and wavelength spacing as small as 0.19 nm at room temperature is demonstrated.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2005.850818</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit properties ; Electric, optical and optoelectronic circuits ; Electronics ; Erbium-doped fiber (EDF) ; Erbium-doped fiber lasers ; Exact sciences and technology ; fiber laser ; Fiber lasers ; homogeneous line broadening ; Information, signal and communications theory ; Integrated optics. Optical fibers and wave guides ; Laser cavities ; Laser stability ; Laser theory ; Lasers ; Lasing ; Line broadening ; Modulation, demodulation ; Modulators ; multiwavelength ; Optical and optoelectronic circuits ; Optical fiber communication ; Optical fiber sensors ; Phase modulation ; Semiconductor lasers ; semiconductor optical amplifier (SOA) ; Semiconductor optical amplifiers ; Signal and communications theory ; Stability ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Temperature ; Transmission and modulation (techniques and equipments) ; Wavelengths</subject><ispartof>Journal of lightwave technology, 2005-08, Vol.23 (8), p.2484-2490</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-d096bb9d7d8009416ff0894cc91df99da117cf15187b4528b8adee6a3baa67c3</citedby><cites>FETCH-LOGICAL-c519t-d096bb9d7d8009416ff0894cc91df99da117cf15187b4528b8adee6a3baa67c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1498953$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1498953$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17055484$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jian Yao, Jian Yao</creatorcontrib><creatorcontrib>Jianping Yao, Jianping Yao</creatorcontrib><creatorcontrib>Zhichao Deng, Zhichao Deng</creatorcontrib><creatorcontrib>Jian Liu, Jian Liu</creatorcontrib><title>Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>A theoretical and experimental study of a multiwavelength fiber-ring laser that incorporates a semiconductor optical amplifier (SOA) in the laser cavity as a phase modulator to suppress the homogeneous line broadening is presented. The analysis reveals that the phase shift introduced by the SOA-based phase modulator is more significant than that formed using a LiNbO/sub 3/ phase modulator, which leads to a better suppression of the homogeneous line broadening. Multiwavelength lasing with small wavelength spacing and improved stability at room temperature is achieved. A fiber-ring laser based on the proposed approach is implemented. Stable multiwavelength operation with up to 26 wavelengths and wavelength spacing as small as 0.19 nm at room temperature is demonstrated.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Erbium-doped fiber (EDF)</subject><subject>Erbium-doped fiber lasers</subject><subject>Exact sciences and technology</subject><subject>fiber laser</subject><subject>Fiber lasers</subject><subject>homogeneous line broadening</subject><subject>Information, signal and communications theory</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Laser cavities</subject><subject>Laser stability</subject><subject>Laser theory</subject><subject>Lasers</subject><subject>Lasing</subject><subject>Line broadening</subject><subject>Modulation, demodulation</subject><subject>Modulators</subject><subject>multiwavelength</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical fiber communication</subject><subject>Optical fiber sensors</subject><subject>Phase modulation</subject><subject>Semiconductor lasers</subject><subject>semiconductor optical amplifier (SOA)</subject><subject>Semiconductor optical amplifiers</subject><subject>Signal and communications theory</subject><subject>Stability</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Temperature</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Wavelengths</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU2L2zAQhkVpoWnacw-9iEI_Ls7qw7Kl47L0Y0tgD83djOVxosW2XEnOsj-g_7sKCSz0sKc5zPO8w_AS8p6zDefMXP3a7jaCMbXRimmuX5AVV0oXQnD5kqxYLWWha1G-Jm9ivGeMl6WuV-Tv7XTEmNwekvMT9T0N3o9FwnHGAGkJSMdlSO4BjjjgtE8H2rsWQxHctKcDRAw0HSBRN1kfZp8djBQm-vvuumjzuqPzIQ86-m4ZIPmQyWzgxbVwdOnxLXnVwxDx3WWuye77t93Nz2J79-P25npbWMVNKjpmqrY1Xd1pxkzJq75n2pTWGt71xnTAeW17rriu21IJ3WroECuQLUBVW7kmX86xc_B_lvx2M7pocRhgQr_ERptKSFlplcnPz5JCs0oKyTL49VmQMyG00XVVZvTjf-i9X8KU_210ZXjmcuKaXJ0hG3yMAftmDm6E8JiTmlPPTe65OfXcnHvOxqdLLEQLQx9gsi4-aTVTqtSn8x_OnEPEp3VptFFS_gNFRbKV</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Jian Yao, Jian Yao</creator><creator>Jianping Yao, Jianping Yao</creator><creator>Zhichao Deng, Zhichao Deng</creator><creator>Jian Liu, Jian Liu</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20050801</creationdate><title>Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity</title><author>Jian Yao, Jian Yao ; Jianping Yao, Jianping Yao ; Zhichao Deng, Zhichao Deng ; Jian Liu, Jian Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-d096bb9d7d8009416ff0894cc91df99da117cf15187b4528b8adee6a3baa67c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Erbium-doped fiber (EDF)</topic><topic>Erbium-doped fiber lasers</topic><topic>Exact sciences and technology</topic><topic>fiber laser</topic><topic>Fiber lasers</topic><topic>homogeneous line broadening</topic><topic>Information, signal and communications theory</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Laser cavities</topic><topic>Laser stability</topic><topic>Laser theory</topic><topic>Lasers</topic><topic>Lasing</topic><topic>Line broadening</topic><topic>Modulation, demodulation</topic><topic>Modulators</topic><topic>multiwavelength</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical fiber communication</topic><topic>Optical fiber sensors</topic><topic>Phase modulation</topic><topic>Semiconductor lasers</topic><topic>semiconductor optical amplifier (SOA)</topic><topic>Semiconductor optical amplifiers</topic><topic>Signal and communications theory</topic><topic>Stability</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Temperature</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian Yao, Jian Yao</creatorcontrib><creatorcontrib>Jianping Yao, Jianping Yao</creatorcontrib><creatorcontrib>Zhichao Deng, Zhichao Deng</creatorcontrib><creatorcontrib>Jian Liu, Jian Liu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jian Yao, Jian Yao</au><au>Jianping Yao, Jianping Yao</au><au>Zhichao Deng, Zhichao Deng</au><au>Jian Liu, Jian Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2005-08-01</date><risdate>2005</risdate><volume>23</volume><issue>8</issue><spage>2484</spage><epage>2490</epage><pages>2484-2490</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A theoretical and experimental study of a multiwavelength fiber-ring laser that incorporates a semiconductor optical amplifier (SOA) in the laser cavity as a phase modulator to suppress the homogeneous line broadening is presented. The analysis reveals that the phase shift introduced by the SOA-based phase modulator is more significant than that formed using a LiNbO/sub 3/ phase modulator, which leads to a better suppression of the homogeneous line broadening. Multiwavelength lasing with small wavelength spacing and improved stability at room temperature is achieved. A fiber-ring laser based on the proposed approach is implemented. Stable multiwavelength operation with up to 26 wavelengths and wavelength spacing as small as 0.19 nm at room temperature is demonstrated.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JLT.2005.850818</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2005-08, Vol.23 (8), p.2484-2490 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_proquest_miscellaneous_1022898764 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Circuit properties Electric, optical and optoelectronic circuits Electronics Erbium-doped fiber (EDF) Erbium-doped fiber lasers Exact sciences and technology fiber laser Fiber lasers homogeneous line broadening Information, signal and communications theory Integrated optics. Optical fibers and wave guides Laser cavities Laser stability Laser theory Lasers Lasing Line broadening Modulation, demodulation Modulators multiwavelength Optical and optoelectronic circuits Optical fiber communication Optical fiber sensors Phase modulation Semiconductor lasers semiconductor optical amplifier (SOA) Semiconductor optical amplifiers Signal and communications theory Stability Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Temperature Transmission and modulation (techniques and equipments) Wavelengths |
title | Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20room-temperature%20multiwavelength%20fiber-ring%20laser%20that%20incorporates%20an%20SOA-based%20phase%20modulator%20in%20the%20laser%20cavity&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Jian%20Yao,%20Jian%20Yao&rft.date=2005-08-01&rft.volume=23&rft.issue=8&rft.spage=2484&rft.epage=2490&rft.pages=2484-2490&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2005.850818&rft_dat=%3Cproquest_RIE%3E28063230%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869122832&rft_id=info:pmid/&rft_ieee_id=1498953&rfr_iscdi=true |