A novel spatter detection algorithm based on typical cellular neural network operations for laser beam welding processes

Real-time monitoring of laser beam welding (LBW) has increasingly gained importance in several manufacturing processes ranging from automobile production to precision mechanics. In the latter, a novel algorithm for the real-time detection of spatters was implemented in a camera based on cellular neu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2012-01, Vol.23 (1), p.015401-1-8
Hauptverfasser: Nicolosi, L, Abt, F, Blug, A, Heider, A, Tetzlaff, R, Höfler, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1-8
container_issue 1
container_start_page 015401
container_title Measurement science & technology
container_volume 23
creator Nicolosi, L
Abt, F
Blug, A
Heider, A
Tetzlaff, R
Höfler, H
description Real-time monitoring of laser beam welding (LBW) has increasingly gained importance in several manufacturing processes ranging from automobile production to precision mechanics. In the latter, a novel algorithm for the real-time detection of spatters was implemented in a camera based on cellular neural networks. The latter can be connected to the optics of commercially available laser machines leading to real-time monitoring of LBW processes at rates up to 15 kHz. Such high monitoring rates allow the integration of other image evaluation tasks such as the detection of the full penetration hole for real-time control of process parameters.
doi_str_mv 10.1088/0957-0233/23/1/015401
format Article
fullrecord <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022898578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022898578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-730b75334239e7ae1468cd9b01b5686c77384c187aabf50cbe14078fc8472aeb3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-BCFHD9adNG2THkX8ggUveg5pOl2r2aYmWXX_vSkrXhRPwwzPMzO8hJwyuGAg5QLqUmSQc77I-YItgJUFsD0yY7xiWVUC2yezH-aQHIXwAgAC6npGPi_p4N7R0jDqGNHTFiOa2LuBartyvo_Pa9rogC1No7gde6MtNWjtxmpPB9z41A8YP5x_pW5Eryc50M55apPnaYN6TT_Qtv2woqN3BkPAcEwOOm0DnnzXOXm6uX68usuWD7f3V5fLzPCqiJng0IiS8yLnNQqNrKikaesGWFNWsjJCcFkYJoXWTVeCaRIBQnZGFiLX2PA5OdvtTZffNhiiWvdh-l8P6DZBMchzWctSyISWO9R4F4LHTo2-X2u_TZCaklZTimpKUeVcMbVLOnnnO69344_yJ6rGtks4_Mb_v_AFZoSOwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022898578</pqid></control><display><type>article</type><title>A novel spatter detection algorithm based on typical cellular neural network operations for laser beam welding processes</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Nicolosi, L ; Abt, F ; Blug, A ; Heider, A ; Tetzlaff, R ; Höfler, H</creator><creatorcontrib>Nicolosi, L ; Abt, F ; Blug, A ; Heider, A ; Tetzlaff, R ; Höfler, H</creatorcontrib><description>Real-time monitoring of laser beam welding (LBW) has increasingly gained importance in several manufacturing processes ranging from automobile production to precision mechanics. In the latter, a novel algorithm for the real-time detection of spatters was implemented in a camera based on cellular neural networks. The latter can be connected to the optics of commercially available laser machines leading to real-time monitoring of LBW processes at rates up to 15 kHz. Such high monitoring rates allow the integration of other image evaluation tasks such as the detection of the full penetration hole for real-time control of process parameters.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/0957-0233/23/1/015401</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Algorithms ; Cellular ; Laser beam welding ; Monitoring ; Neural networks ; Real time ; Tasks</subject><ispartof>Measurement science &amp; technology, 2012-01, Vol.23 (1), p.015401-1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-730b75334239e7ae1468cd9b01b5686c77384c187aabf50cbe14078fc8472aeb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-0233/23/1/015401/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53805,53885</link.rule.ids></links><search><creatorcontrib>Nicolosi, L</creatorcontrib><creatorcontrib>Abt, F</creatorcontrib><creatorcontrib>Blug, A</creatorcontrib><creatorcontrib>Heider, A</creatorcontrib><creatorcontrib>Tetzlaff, R</creatorcontrib><creatorcontrib>Höfler, H</creatorcontrib><title>A novel spatter detection algorithm based on typical cellular neural network operations for laser beam welding processes</title><title>Measurement science &amp; technology</title><description>Real-time monitoring of laser beam welding (LBW) has increasingly gained importance in several manufacturing processes ranging from automobile production to precision mechanics. In the latter, a novel algorithm for the real-time detection of spatters was implemented in a camera based on cellular neural networks. The latter can be connected to the optics of commercially available laser machines leading to real-time monitoring of LBW processes at rates up to 15 kHz. Such high monitoring rates allow the integration of other image evaluation tasks such as the detection of the full penetration hole for real-time control of process parameters.</description><subject>Algorithms</subject><subject>Cellular</subject><subject>Laser beam welding</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Real time</subject><subject>Tasks</subject><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-BCFHD9adNG2THkX8ggUveg5pOl2r2aYmWXX_vSkrXhRPwwzPMzO8hJwyuGAg5QLqUmSQc77I-YItgJUFsD0yY7xiWVUC2yezH-aQHIXwAgAC6npGPi_p4N7R0jDqGNHTFiOa2LuBartyvo_Pa9rogC1No7gde6MtNWjtxmpPB9z41A8YP5x_pW5Eryc50M55apPnaYN6TT_Qtv2woqN3BkPAcEwOOm0DnnzXOXm6uX68usuWD7f3V5fLzPCqiJng0IiS8yLnNQqNrKikaesGWFNWsjJCcFkYJoXWTVeCaRIBQnZGFiLX2PA5OdvtTZffNhiiWvdh-l8P6DZBMchzWctSyISWO9R4F4LHTo2-X2u_TZCaklZTimpKUeVcMbVLOnnnO69344_yJ6rGtks4_Mb_v_AFZoSOwQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Nicolosi, L</creator><creator>Abt, F</creator><creator>Blug, A</creator><creator>Heider, A</creator><creator>Tetzlaff, R</creator><creator>Höfler, H</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120101</creationdate><title>A novel spatter detection algorithm based on typical cellular neural network operations for laser beam welding processes</title><author>Nicolosi, L ; Abt, F ; Blug, A ; Heider, A ; Tetzlaff, R ; Höfler, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-730b75334239e7ae1468cd9b01b5686c77384c187aabf50cbe14078fc8472aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Cellular</topic><topic>Laser beam welding</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Real time</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicolosi, L</creatorcontrib><creatorcontrib>Abt, F</creatorcontrib><creatorcontrib>Blug, A</creatorcontrib><creatorcontrib>Heider, A</creatorcontrib><creatorcontrib>Tetzlaff, R</creatorcontrib><creatorcontrib>Höfler, H</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolosi, L</au><au>Abt, F</au><au>Blug, A</au><au>Heider, A</au><au>Tetzlaff, R</au><au>Höfler, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel spatter detection algorithm based on typical cellular neural network operations for laser beam welding processes</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>23</volume><issue>1</issue><spage>015401</spage><epage>1-8</epage><pages>015401-1-8</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>Real-time monitoring of laser beam welding (LBW) has increasingly gained importance in several manufacturing processes ranging from automobile production to precision mechanics. In the latter, a novel algorithm for the real-time detection of spatters was implemented in a camera based on cellular neural networks. The latter can be connected to the optics of commercially available laser machines leading to real-time monitoring of LBW processes at rates up to 15 kHz. Such high monitoring rates allow the integration of other image evaluation tasks such as the detection of the full penetration hole for real-time control of process parameters.</abstract><pub>IOP Publishing</pub><doi>10.1088/0957-0233/23/1/015401</doi></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2012-01, Vol.23 (1), p.015401-1-8
issn 0957-0233
1361-6501
language eng
recordid cdi_proquest_miscellaneous_1022898578
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Algorithms
Cellular
Laser beam welding
Monitoring
Neural networks
Real time
Tasks
title A novel spatter detection algorithm based on typical cellular neural network operations for laser beam welding processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20spatter%20detection%20algorithm%20based%20on%20typical%20cellular%20neural%20network%20operations%20for%20laser%20beam%20welding%20processes&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Nicolosi,%20L&rft.date=2012-01-01&rft.volume=23&rft.issue=1&rft.spage=015401&rft.epage=1-8&rft.pages=015401-1-8&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/0957-0233/23/1/015401&rft_dat=%3Cproquest_iop_p%3E1022898578%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022898578&rft_id=info:pmid/&rfr_iscdi=true