An Optimization-Based Parallel Particle Filter for Multitarget Tracking

Particle filters are used in state estimation applications because of their capability to solve nonlinear and non-Gaussian problems effectively. However, they have high computational requirements, especially in the case of multitarget tracking, where data association is the bottleneck. In order to p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2012-04, Vol.48 (2), p.1601-1618
Hauptverfasser: Sutharsan, S., Kirubarajan, T., Lang, T., Mcdonald, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1618
container_issue 2
container_start_page 1601
container_title IEEE transactions on aerospace and electronic systems
container_volume 48
creator Sutharsan, S.
Kirubarajan, T.
Lang, T.
Mcdonald, M.
description Particle filters are used in state estimation applications because of their capability to solve nonlinear and non-Gaussian problems effectively. However, they have high computational requirements, especially in the case of multitarget tracking, where data association is the bottleneck. In order to perform data association and estimation together, an augmented state vector, whose dimensions depend on the number of targets, is typically used in particle filters. With data association, the computational load increases exponentially as the number of targets increases. In this case, parallelization is a possibility for achieving real-time feasibility in large-scale multitarget tracking applications. In the work presented here, an optimization-based scheduling algorithm, that is suitable for parallel implementation of particle filter, is presented. This proposed scheduling algorithm minimizes the total computation time for the bus-connected heterogeneous primary-secondary architecture. Further, this scheduler is capable of selecting the optimal number of processors from a large pool of secondary processors and mapping the particles among the selected ones. A new distributed resampling algorithm suitable for parallel computing is also proposed. Furthermore, a less communication-intensive parallel implementation of the particle filter without compromising tracking accuracy using an efficient load balancing technique, in which optimal particle migration among secondary processors is ensured, is presented. Simulation results demonstrate the tracking effectiveness of the new parallel particle filter and the speedup achieved using parallelization.
doi_str_mv 10.1109/TAES.2012.6178081
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022894990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6178081</ieee_id><sourcerecordid>1022894990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8a1a5a56d49ed0c5d8cb3484dc3dac3c3b741c3a31217632ad1647a45bb4d80e3</originalsourceid><addsrcrecordid>eNpdkLFOwzAQhi0EEqXwAIglYmJJsWMnsceC2oJUVCTKbF1tt3Jxk2I7Azw9jloYmO5O993p14fQNcEjQrC4X44nb6MCk2JUkZpjTk7QgJRlnYsK01M0wJjwXBQlOUcXIWzTyDijAzQbN9liH-3OfkO0bZM_QDA6ewUPzhnXN9EqZ7KpddH4bN367KVz0UbwGxOzpQf1YZvNJTpbgwvm6liH6H06WT4-5fPF7PlxPM8VrXjMORAooaw0E0ZjVWquVjQl0YpqUFTRVc2IokBJQeqKFqBJxWpg5WrFNMeGDtHd4e_et5-dCVHubFDGOWhM2wVJcFFwwYTACb39h27bzjcpnRSCYp4c0ASRA6R8G4I3a7n3dgf-K32SvVnZm5W9WXk0m25uDjfWGPPH_25_ADLVc7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>993080013</pqid></control><display><type>article</type><title>An Optimization-Based Parallel Particle Filter for Multitarget Tracking</title><source>IEEE Electronic Library (IEL)</source><creator>Sutharsan, S. ; Kirubarajan, T. ; Lang, T. ; Mcdonald, M.</creator><creatorcontrib>Sutharsan, S. ; Kirubarajan, T. ; Lang, T. ; Mcdonald, M.</creatorcontrib><description>Particle filters are used in state estimation applications because of their capability to solve nonlinear and non-Gaussian problems effectively. However, they have high computational requirements, especially in the case of multitarget tracking, where data association is the bottleneck. In order to perform data association and estimation together, an augmented state vector, whose dimensions depend on the number of targets, is typically used in particle filters. With data association, the computational load increases exponentially as the number of targets increases. In this case, parallelization is a possibility for achieving real-time feasibility in large-scale multitarget tracking applications. In the work presented here, an optimization-based scheduling algorithm, that is suitable for parallel implementation of particle filter, is presented. This proposed scheduling algorithm minimizes the total computation time for the bus-connected heterogeneous primary-secondary architecture. Further, this scheduler is capable of selecting the optimal number of processors from a large pool of secondary processors and mapping the particles among the selected ones. A new distributed resampling algorithm suitable for parallel computing is also proposed. Furthermore, a less communication-intensive parallel implementation of the particle filter without compromising tracking accuracy using an efficient load balancing technique, in which optimal particle migration among secondary processors is ensured, is presented. Simulation results demonstrate the tracking effectiveness of the new parallel particle filter and the speedup achieved using parallelization.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2012.6178081</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Computation ; Computer architecture ; Computer simulation ; Optimization ; Parallel processing ; Particle filters ; Processors ; Program processors ; Real-time systems ; Scheduling ; Studies ; Target tracking ; Tracking</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2012-04, Vol.48 (2), p.1601-1618</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8a1a5a56d49ed0c5d8cb3484dc3dac3c3b741c3a31217632ad1647a45bb4d80e3</citedby><cites>FETCH-LOGICAL-c368t-8a1a5a56d49ed0c5d8cb3484dc3dac3c3b741c3a31217632ad1647a45bb4d80e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6178081$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6178081$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sutharsan, S.</creatorcontrib><creatorcontrib>Kirubarajan, T.</creatorcontrib><creatorcontrib>Lang, T.</creatorcontrib><creatorcontrib>Mcdonald, M.</creatorcontrib><title>An Optimization-Based Parallel Particle Filter for Multitarget Tracking</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Particle filters are used in state estimation applications because of their capability to solve nonlinear and non-Gaussian problems effectively. However, they have high computational requirements, especially in the case of multitarget tracking, where data association is the bottleneck. In order to perform data association and estimation together, an augmented state vector, whose dimensions depend on the number of targets, is typically used in particle filters. With data association, the computational load increases exponentially as the number of targets increases. In this case, parallelization is a possibility for achieving real-time feasibility in large-scale multitarget tracking applications. In the work presented here, an optimization-based scheduling algorithm, that is suitable for parallel implementation of particle filter, is presented. This proposed scheduling algorithm minimizes the total computation time for the bus-connected heterogeneous primary-secondary architecture. Further, this scheduler is capable of selecting the optimal number of processors from a large pool of secondary processors and mapping the particles among the selected ones. A new distributed resampling algorithm suitable for parallel computing is also proposed. Furthermore, a less communication-intensive parallel implementation of the particle filter without compromising tracking accuracy using an efficient load balancing technique, in which optimal particle migration among secondary processors is ensured, is presented. Simulation results demonstrate the tracking effectiveness of the new parallel particle filter and the speedup achieved using parallelization.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>Optimization</subject><subject>Parallel processing</subject><subject>Particle filters</subject><subject>Processors</subject><subject>Program processors</subject><subject>Real-time systems</subject><subject>Scheduling</subject><subject>Studies</subject><subject>Target tracking</subject><subject>Tracking</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLFOwzAQhi0EEqXwAIglYmJJsWMnsceC2oJUVCTKbF1tt3Jxk2I7Azw9jloYmO5O993p14fQNcEjQrC4X44nb6MCk2JUkZpjTk7QgJRlnYsK01M0wJjwXBQlOUcXIWzTyDijAzQbN9liH-3OfkO0bZM_QDA6ewUPzhnXN9EqZ7KpddH4bN367KVz0UbwGxOzpQf1YZvNJTpbgwvm6liH6H06WT4-5fPF7PlxPM8VrXjMORAooaw0E0ZjVWquVjQl0YpqUFTRVc2IokBJQeqKFqBJxWpg5WrFNMeGDtHd4e_et5-dCVHubFDGOWhM2wVJcFFwwYTACb39h27bzjcpnRSCYp4c0ASRA6R8G4I3a7n3dgf-K32SvVnZm5W9WXk0m25uDjfWGPPH_25_ADLVc7Y</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Sutharsan, S.</creator><creator>Kirubarajan, T.</creator><creator>Lang, T.</creator><creator>Mcdonald, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201204</creationdate><title>An Optimization-Based Parallel Particle Filter for Multitarget Tracking</title><author>Sutharsan, S. ; Kirubarajan, T. ; Lang, T. ; Mcdonald, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8a1a5a56d49ed0c5d8cb3484dc3dac3c3b741c3a31217632ad1647a45bb4d80e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>Optimization</topic><topic>Parallel processing</topic><topic>Particle filters</topic><topic>Processors</topic><topic>Program processors</topic><topic>Real-time systems</topic><topic>Scheduling</topic><topic>Studies</topic><topic>Target tracking</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sutharsan, S.</creatorcontrib><creatorcontrib>Kirubarajan, T.</creatorcontrib><creatorcontrib>Lang, T.</creatorcontrib><creatorcontrib>Mcdonald, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sutharsan, S.</au><au>Kirubarajan, T.</au><au>Lang, T.</au><au>Mcdonald, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimization-Based Parallel Particle Filter for Multitarget Tracking</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2012-04</date><risdate>2012</risdate><volume>48</volume><issue>2</issue><spage>1601</spage><epage>1618</epage><pages>1601-1618</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Particle filters are used in state estimation applications because of their capability to solve nonlinear and non-Gaussian problems effectively. However, they have high computational requirements, especially in the case of multitarget tracking, where data association is the bottleneck. In order to perform data association and estimation together, an augmented state vector, whose dimensions depend on the number of targets, is typically used in particle filters. With data association, the computational load increases exponentially as the number of targets increases. In this case, parallelization is a possibility for achieving real-time feasibility in large-scale multitarget tracking applications. In the work presented here, an optimization-based scheduling algorithm, that is suitable for parallel implementation of particle filter, is presented. This proposed scheduling algorithm minimizes the total computation time for the bus-connected heterogeneous primary-secondary architecture. Further, this scheduler is capable of selecting the optimal number of processors from a large pool of secondary processors and mapping the particles among the selected ones. A new distributed resampling algorithm suitable for parallel computing is also proposed. Furthermore, a less communication-intensive parallel implementation of the particle filter without compromising tracking accuracy using an efficient load balancing technique, in which optimal particle migration among secondary processors is ensured, is presented. Simulation results demonstrate the tracking effectiveness of the new parallel particle filter and the speedup achieved using parallelization.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2012.6178081</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2012-04, Vol.48 (2), p.1601-1618
issn 0018-9251
1557-9603
language eng
recordid cdi_proquest_miscellaneous_1022894990
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Computation
Computer architecture
Computer simulation
Optimization
Parallel processing
Particle filters
Processors
Program processors
Real-time systems
Scheduling
Studies
Target tracking
Tracking
title An Optimization-Based Parallel Particle Filter for Multitarget Tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimization-Based%20Parallel%20Particle%20Filter%20for%20Multitarget%20Tracking&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Sutharsan,%20S.&rft.date=2012-04&rft.volume=48&rft.issue=2&rft.spage=1601&rft.epage=1618&rft.pages=1601-1618&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2012.6178081&rft_dat=%3Cproquest_RIE%3E1022894990%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=993080013&rft_id=info:pmid/&rft_ieee_id=6178081&rfr_iscdi=true