Spatial Domain Green's Functions of Layered Media Using a New Method for Sommerfeld Integrals

A simplified approach for accurate and efficient computation of infinite domain Sommerfeld integrals (SI) associated with spatial domain Green's functions of layered media is described in this article. Integrand in SI excluding Bessel function is expressed as sum of complex exponentials using t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE microwave and wireless components letters 2012-04, Vol.22 (4), p.161-163
1. Verfasser: Kurup, D. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue 4
container_start_page 161
container_title IEEE microwave and wireless components letters
container_volume 22
creator Kurup, D. G.
description A simplified approach for accurate and efficient computation of infinite domain Sommerfeld integrals (SI) associated with spatial domain Green's functions of layered media is described in this article. Integrand in SI excluding Bessel function is expressed as sum of complex exponentials using the matrix pencil method (MPM) which requires fewer terms than when we include oscillating Bessel functions. By using a novel three term representation for small arguments and classical large argument formulas of Bessel functions, analytical expressions for computing integrals along infinite domain SI tails are derived. The newly derived analytical formulas use the same MPM expansions for any given set of radial distance parameter ρ, enabling us to efficiently solve closed form Green's functions in layered media.
doi_str_mv 10.1109/LMWC.2012.2188020
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022891901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6171879</ieee_id><sourcerecordid>2632381181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-929d7fc7a9ed6a28656e19928ff9547df48e1b529166f3e1eae91ac9d3ea5bfb3</originalsourceid><addsrcrecordid>eNpdkE9r3DAQxU1JoPnTD1B6EYXQXrzVSJatOYZtkwY26SENPRUza49SBVvaSl5Cvn297JJDT2-Y-b3H8IriPcgFgMQvq9tfy4WSoBYKrJVKvilOwBhbQlNXR7tZQwla4tviNOcnKaGyFZwUv-83NHkaxNc4kg_iOjGHT1lcbUM3-RiyiE6s6IUT9-KWe0_iIfvwKEjc8fO8mf7EXriYxH0cR06Oh17chIkfEw35vDh2s_C7g54VD1fffi6_l6sf1zfLy1XZaWOmEhX2jesaQu5rUrY2NQOiss6hqZreVZZhbRRCXTvNwMQI1GGvmczarfVZ8Xmfu0nx75bz1I4-dzwMFDhucwtSKYuAEmb043_oU9ymMH_XImqLTaXsDMEe6lLMObFrN8mPlF7mpHbXd7vru9313R76nj0Xh2DKHQ0uUeh8fjUqY2ulsZm5D3vOM_PruYYGbIP6H6vQiBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>993897428</pqid></control><display><type>article</type><title>Spatial Domain Green's Functions of Layered Media Using a New Method for Sommerfeld Integrals</title><source>IEEE Electronic Library (IEL)</source><creator>Kurup, D. G.</creator><creatorcontrib>Kurup, D. G.</creatorcontrib><description>A simplified approach for accurate and efficient computation of infinite domain Sommerfeld integrals (SI) associated with spatial domain Green's functions of layered media is described in this article. Integrand in SI excluding Bessel function is expressed as sum of complex exponentials using the matrix pencil method (MPM) which requires fewer terms than when we include oscillating Bessel functions. By using a novel three term representation for small arguments and classical large argument formulas of Bessel functions, analytical expressions for computing integrals along infinite domain SI tails are derived. The newly derived analytical formulas use the same MPM expansions for any given set of radial distance parameter ρ, enabling us to efficiently solve closed form Green's functions in layered media.</description><identifier>ISSN: 1531-1309</identifier><identifier>ISSN: 2771-957X</identifier><identifier>EISSN: 1558-1764</identifier><identifier>EISSN: 2771-9588</identifier><identifier>DOI: 10.1109/LMWC.2012.2188020</identifier><identifier>CODEN: IMWCBJ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied classical electromagnetism ; Bessel functions ; Computational efficiency ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Exact solutions ; Fundamental areas of phenomenology (including applications) ; Green function ; Green's function ; Green's function methods ; Green's functions ; Integrals ; layered media ; Mathematical analysis ; Media ; Microstrip ; Microwaves ; Nonhomogeneous media ; Physics ; Silicon ; Sommerfeld integration ; Substrates</subject><ispartof>IEEE microwave and wireless components letters, 2012-04, Vol.22 (4), p.161-163</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-929d7fc7a9ed6a28656e19928ff9547df48e1b529166f3e1eae91ac9d3ea5bfb3</citedby><cites>FETCH-LOGICAL-c355t-929d7fc7a9ed6a28656e19928ff9547df48e1b529166f3e1eae91ac9d3ea5bfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6171879$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27904,27905,54738</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6171879$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25862397$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurup, D. G.</creatorcontrib><title>Spatial Domain Green's Functions of Layered Media Using a New Method for Sommerfeld Integrals</title><title>IEEE microwave and wireless components letters</title><addtitle>LMWC</addtitle><description>A simplified approach for accurate and efficient computation of infinite domain Sommerfeld integrals (SI) associated with spatial domain Green's functions of layered media is described in this article. Integrand in SI excluding Bessel function is expressed as sum of complex exponentials using the matrix pencil method (MPM) which requires fewer terms than when we include oscillating Bessel functions. By using a novel three term representation for small arguments and classical large argument formulas of Bessel functions, analytical expressions for computing integrals along infinite domain SI tails are derived. The newly derived analytical formulas use the same MPM expansions for any given set of radial distance parameter ρ, enabling us to efficiently solve closed form Green's functions in layered media.</description><subject>Applied classical electromagnetism</subject><subject>Bessel functions</subject><subject>Computational efficiency</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Green function</subject><subject>Green's function</subject><subject>Green's function methods</subject><subject>Green's functions</subject><subject>Integrals</subject><subject>layered media</subject><subject>Mathematical analysis</subject><subject>Media</subject><subject>Microstrip</subject><subject>Microwaves</subject><subject>Nonhomogeneous media</subject><subject>Physics</subject><subject>Silicon</subject><subject>Sommerfeld integration</subject><subject>Substrates</subject><issn>1531-1309</issn><issn>2771-957X</issn><issn>1558-1764</issn><issn>2771-9588</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9r3DAQxU1JoPnTD1B6EYXQXrzVSJatOYZtkwY26SENPRUza49SBVvaSl5Cvn297JJDT2-Y-b3H8IriPcgFgMQvq9tfy4WSoBYKrJVKvilOwBhbQlNXR7tZQwla4tviNOcnKaGyFZwUv-83NHkaxNc4kg_iOjGHT1lcbUM3-RiyiE6s6IUT9-KWe0_iIfvwKEjc8fO8mf7EXriYxH0cR06Oh17chIkfEw35vDh2s_C7g54VD1fffi6_l6sf1zfLy1XZaWOmEhX2jesaQu5rUrY2NQOiss6hqZreVZZhbRRCXTvNwMQI1GGvmczarfVZ8Xmfu0nx75bz1I4-dzwMFDhucwtSKYuAEmb043_oU9ymMH_XImqLTaXsDMEe6lLMObFrN8mPlF7mpHbXd7vru9313R76nj0Xh2DKHQ0uUeh8fjUqY2ulsZm5D3vOM_PruYYGbIP6H6vQiBE</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Kurup, D. G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120401</creationdate><title>Spatial Domain Green's Functions of Layered Media Using a New Method for Sommerfeld Integrals</title><author>Kurup, D. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-929d7fc7a9ed6a28656e19928ff9547df48e1b529166f3e1eae91ac9d3ea5bfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied classical electromagnetism</topic><topic>Bessel functions</topic><topic>Computational efficiency</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Green function</topic><topic>Green's function</topic><topic>Green's function methods</topic><topic>Green's functions</topic><topic>Integrals</topic><topic>layered media</topic><topic>Mathematical analysis</topic><topic>Media</topic><topic>Microstrip</topic><topic>Microwaves</topic><topic>Nonhomogeneous media</topic><topic>Physics</topic><topic>Silicon</topic><topic>Sommerfeld integration</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurup, D. G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE microwave and wireless components letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kurup, D. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Domain Green's Functions of Layered Media Using a New Method for Sommerfeld Integrals</atitle><jtitle>IEEE microwave and wireless components letters</jtitle><stitle>LMWC</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>22</volume><issue>4</issue><spage>161</spage><epage>163</epage><pages>161-163</pages><issn>1531-1309</issn><issn>2771-957X</issn><eissn>1558-1764</eissn><eissn>2771-9588</eissn><coden>IMWCBJ</coden><abstract>A simplified approach for accurate and efficient computation of infinite domain Sommerfeld integrals (SI) associated with spatial domain Green's functions of layered media is described in this article. Integrand in SI excluding Bessel function is expressed as sum of complex exponentials using the matrix pencil method (MPM) which requires fewer terms than when we include oscillating Bessel functions. By using a novel three term representation for small arguments and classical large argument formulas of Bessel functions, analytical expressions for computing integrals along infinite domain SI tails are derived. The newly derived analytical formulas use the same MPM expansions for any given set of radial distance parameter ρ, enabling us to efficiently solve closed form Green's functions in layered media.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LMWC.2012.2188020</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1531-1309
ispartof IEEE microwave and wireless components letters, 2012-04, Vol.22 (4), p.161-163
issn 1531-1309
2771-957X
1558-1764
2771-9588
language eng
recordid cdi_proquest_miscellaneous_1022891901
source IEEE Electronic Library (IEL)
subjects Applied classical electromagnetism
Bessel functions
Computational efficiency
Electromagnetic wave propagation, radiowave propagation
Electromagnetism
electron and ion optics
Exact sciences and technology
Exact solutions
Fundamental areas of phenomenology (including applications)
Green function
Green's function
Green's function methods
Green's functions
Integrals
layered media
Mathematical analysis
Media
Microstrip
Microwaves
Nonhomogeneous media
Physics
Silicon
Sommerfeld integration
Substrates
title Spatial Domain Green's Functions of Layered Media Using a New Method for Sommerfeld Integrals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Domain%20Green's%20Functions%20of%20Layered%20Media%20Using%20a%20New%20Method%20for%20Sommerfeld%20Integrals&rft.jtitle=IEEE%20microwave%20and%20wireless%20components%20letters&rft.au=Kurup,%20D.%20G.&rft.date=2012-04-01&rft.volume=22&rft.issue=4&rft.spage=161&rft.epage=163&rft.pages=161-163&rft.issn=1531-1309&rft.eissn=1558-1764&rft.coden=IMWCBJ&rft_id=info:doi/10.1109/LMWC.2012.2188020&rft_dat=%3Cproquest_RIE%3E2632381181%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=993897428&rft_id=info:pmid/&rft_ieee_id=6171879&rfr_iscdi=true