Spatial Domain Green's Functions of Layered Media Using a New Method for Sommerfeld Integrals
A simplified approach for accurate and efficient computation of infinite domain Sommerfeld integrals (SI) associated with spatial domain Green's functions of layered media is described in this article. Integrand in SI excluding Bessel function is expressed as sum of complex exponentials using t...
Gespeichert in:
Veröffentlicht in: | IEEE microwave and wireless components letters 2012-04, Vol.22 (4), p.161-163 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | 4 |
container_start_page | 161 |
container_title | IEEE microwave and wireless components letters |
container_volume | 22 |
creator | Kurup, D. G. |
description | A simplified approach for accurate and efficient computation of infinite domain Sommerfeld integrals (SI) associated with spatial domain Green's functions of layered media is described in this article. Integrand in SI excluding Bessel function is expressed as sum of complex exponentials using the matrix pencil method (MPM) which requires fewer terms than when we include oscillating Bessel functions. By using a novel three term representation for small arguments and classical large argument formulas of Bessel functions, analytical expressions for computing integrals along infinite domain SI tails are derived. The newly derived analytical formulas use the same MPM expansions for any given set of radial distance parameter ρ, enabling us to efficiently solve closed form Green's functions in layered media. |
doi_str_mv | 10.1109/LMWC.2012.2188020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022891901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6171879</ieee_id><sourcerecordid>2632381181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-929d7fc7a9ed6a28656e19928ff9547df48e1b529166f3e1eae91ac9d3ea5bfb3</originalsourceid><addsrcrecordid>eNpdkE9r3DAQxU1JoPnTD1B6EYXQXrzVSJatOYZtkwY26SENPRUza49SBVvaSl5Cvn297JJDT2-Y-b3H8IriPcgFgMQvq9tfy4WSoBYKrJVKvilOwBhbQlNXR7tZQwla4tviNOcnKaGyFZwUv-83NHkaxNc4kg_iOjGHT1lcbUM3-RiyiE6s6IUT9-KWe0_iIfvwKEjc8fO8mf7EXriYxH0cR06Oh17chIkfEw35vDh2s_C7g54VD1fffi6_l6sf1zfLy1XZaWOmEhX2jesaQu5rUrY2NQOiss6hqZreVZZhbRRCXTvNwMQI1GGvmczarfVZ8Xmfu0nx75bz1I4-dzwMFDhucwtSKYuAEmb043_oU9ymMH_XImqLTaXsDMEe6lLMObFrN8mPlF7mpHbXd7vru9313R76nj0Xh2DKHQ0uUeh8fjUqY2ulsZm5D3vOM_PruYYGbIP6H6vQiBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>993897428</pqid></control><display><type>article</type><title>Spatial Domain Green's Functions of Layered Media Using a New Method for Sommerfeld Integrals</title><source>IEEE Electronic Library (IEL)</source><creator>Kurup, D. G.</creator><creatorcontrib>Kurup, D. G.</creatorcontrib><description>A simplified approach for accurate and efficient computation of infinite domain Sommerfeld integrals (SI) associated with spatial domain Green's functions of layered media is described in this article. Integrand in SI excluding Bessel function is expressed as sum of complex exponentials using the matrix pencil method (MPM) which requires fewer terms than when we include oscillating Bessel functions. By using a novel three term representation for small arguments and classical large argument formulas of Bessel functions, analytical expressions for computing integrals along infinite domain SI tails are derived. The newly derived analytical formulas use the same MPM expansions for any given set of radial distance parameter ρ, enabling us to efficiently solve closed form Green's functions in layered media.</description><identifier>ISSN: 1531-1309</identifier><identifier>ISSN: 2771-957X</identifier><identifier>EISSN: 1558-1764</identifier><identifier>EISSN: 2771-9588</identifier><identifier>DOI: 10.1109/LMWC.2012.2188020</identifier><identifier>CODEN: IMWCBJ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied classical electromagnetism ; Bessel functions ; Computational efficiency ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Exact solutions ; Fundamental areas of phenomenology (including applications) ; Green function ; Green's function ; Green's function methods ; Green's functions ; Integrals ; layered media ; Mathematical analysis ; Media ; Microstrip ; Microwaves ; Nonhomogeneous media ; Physics ; Silicon ; Sommerfeld integration ; Substrates</subject><ispartof>IEEE microwave and wireless components letters, 2012-04, Vol.22 (4), p.161-163</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-929d7fc7a9ed6a28656e19928ff9547df48e1b529166f3e1eae91ac9d3ea5bfb3</citedby><cites>FETCH-LOGICAL-c355t-929d7fc7a9ed6a28656e19928ff9547df48e1b529166f3e1eae91ac9d3ea5bfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6171879$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27904,27905,54738</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6171879$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25862397$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurup, D. G.</creatorcontrib><title>Spatial Domain Green's Functions of Layered Media Using a New Method for Sommerfeld Integrals</title><title>IEEE microwave and wireless components letters</title><addtitle>LMWC</addtitle><description>A simplified approach for accurate and efficient computation of infinite domain Sommerfeld integrals (SI) associated with spatial domain Green's functions of layered media is described in this article. Integrand in SI excluding Bessel function is expressed as sum of complex exponentials using the matrix pencil method (MPM) which requires fewer terms than when we include oscillating Bessel functions. By using a novel three term representation for small arguments and classical large argument formulas of Bessel functions, analytical expressions for computing integrals along infinite domain SI tails are derived. The newly derived analytical formulas use the same MPM expansions for any given set of radial distance parameter ρ, enabling us to efficiently solve closed form Green's functions in layered media.</description><subject>Applied classical electromagnetism</subject><subject>Bessel functions</subject><subject>Computational efficiency</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Green function</subject><subject>Green's function</subject><subject>Green's function methods</subject><subject>Green's functions</subject><subject>Integrals</subject><subject>layered media</subject><subject>Mathematical analysis</subject><subject>Media</subject><subject>Microstrip</subject><subject>Microwaves</subject><subject>Nonhomogeneous media</subject><subject>Physics</subject><subject>Silicon</subject><subject>Sommerfeld integration</subject><subject>Substrates</subject><issn>1531-1309</issn><issn>2771-957X</issn><issn>1558-1764</issn><issn>2771-9588</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9r3DAQxU1JoPnTD1B6EYXQXrzVSJatOYZtkwY26SENPRUza49SBVvaSl5Cvn297JJDT2-Y-b3H8IriPcgFgMQvq9tfy4WSoBYKrJVKvilOwBhbQlNXR7tZQwla4tviNOcnKaGyFZwUv-83NHkaxNc4kg_iOjGHT1lcbUM3-RiyiE6s6IUT9-KWe0_iIfvwKEjc8fO8mf7EXriYxH0cR06Oh17chIkfEw35vDh2s_C7g54VD1fffi6_l6sf1zfLy1XZaWOmEhX2jesaQu5rUrY2NQOiss6hqZreVZZhbRRCXTvNwMQI1GGvmczarfVZ8Xmfu0nx75bz1I4-dzwMFDhucwtSKYuAEmb043_oU9ymMH_XImqLTaXsDMEe6lLMObFrN8mPlF7mpHbXd7vru9313R76nj0Xh2DKHQ0uUeh8fjUqY2ulsZm5D3vOM_PruYYGbIP6H6vQiBE</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Kurup, D. G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120401</creationdate><title>Spatial Domain Green's Functions of Layered Media Using a New Method for Sommerfeld Integrals</title><author>Kurup, D. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-929d7fc7a9ed6a28656e19928ff9547df48e1b529166f3e1eae91ac9d3ea5bfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied classical electromagnetism</topic><topic>Bessel functions</topic><topic>Computational efficiency</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Green function</topic><topic>Green's function</topic><topic>Green's function methods</topic><topic>Green's functions</topic><topic>Integrals</topic><topic>layered media</topic><topic>Mathematical analysis</topic><topic>Media</topic><topic>Microstrip</topic><topic>Microwaves</topic><topic>Nonhomogeneous media</topic><topic>Physics</topic><topic>Silicon</topic><topic>Sommerfeld integration</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurup, D. G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE microwave and wireless components letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kurup, D. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Domain Green's Functions of Layered Media Using a New Method for Sommerfeld Integrals</atitle><jtitle>IEEE microwave and wireless components letters</jtitle><stitle>LMWC</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>22</volume><issue>4</issue><spage>161</spage><epage>163</epage><pages>161-163</pages><issn>1531-1309</issn><issn>2771-957X</issn><eissn>1558-1764</eissn><eissn>2771-9588</eissn><coden>IMWCBJ</coden><abstract>A simplified approach for accurate and efficient computation of infinite domain Sommerfeld integrals (SI) associated with spatial domain Green's functions of layered media is described in this article. Integrand in SI excluding Bessel function is expressed as sum of complex exponentials using the matrix pencil method (MPM) which requires fewer terms than when we include oscillating Bessel functions. By using a novel three term representation for small arguments and classical large argument formulas of Bessel functions, analytical expressions for computing integrals along infinite domain SI tails are derived. The newly derived analytical formulas use the same MPM expansions for any given set of radial distance parameter ρ, enabling us to efficiently solve closed form Green's functions in layered media.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LMWC.2012.2188020</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1531-1309 |
ispartof | IEEE microwave and wireless components letters, 2012-04, Vol.22 (4), p.161-163 |
issn | 1531-1309 2771-957X 1558-1764 2771-9588 |
language | eng |
recordid | cdi_proquest_miscellaneous_1022891901 |
source | IEEE Electronic Library (IEL) |
subjects | Applied classical electromagnetism Bessel functions Computational efficiency Electromagnetic wave propagation, radiowave propagation Electromagnetism electron and ion optics Exact sciences and technology Exact solutions Fundamental areas of phenomenology (including applications) Green function Green's function Green's function methods Green's functions Integrals layered media Mathematical analysis Media Microstrip Microwaves Nonhomogeneous media Physics Silicon Sommerfeld integration Substrates |
title | Spatial Domain Green's Functions of Layered Media Using a New Method for Sommerfeld Integrals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Domain%20Green's%20Functions%20of%20Layered%20Media%20Using%20a%20New%20Method%20for%20Sommerfeld%20Integrals&rft.jtitle=IEEE%20microwave%20and%20wireless%20components%20letters&rft.au=Kurup,%20D.%20G.&rft.date=2012-04-01&rft.volume=22&rft.issue=4&rft.spage=161&rft.epage=163&rft.pages=161-163&rft.issn=1531-1309&rft.eissn=1558-1764&rft.coden=IMWCBJ&rft_id=info:doi/10.1109/LMWC.2012.2188020&rft_dat=%3Cproquest_RIE%3E2632381181%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=993897428&rft_id=info:pmid/&rft_ieee_id=6171879&rfr_iscdi=true |