The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials

In this paper, we introduce the Galerkin method using a new basis of smooth piecewise cubic polynomials for the one-dimensional nonlinear KdV equation. The stability analysis shows that the present method is unconditionally stable in L2-norm. Numerical experiments show that the proposed method prese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2012-05, Vol.218 (17), p.8659-8671
Hauptverfasser: Hao, Shu-Yan, Xie, Shu-Sen, Yi, Su-Cheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8671
container_issue 17
container_start_page 8659
container_title Applied mathematics and computation
container_volume 218
creator Hao, Shu-Yan
Xie, Shu-Sen
Yi, Su-Cheol
description In this paper, we introduce the Galerkin method using a new basis of smooth piecewise cubic polynomials for the one-dimensional nonlinear KdV equation. The stability analysis shows that the present method is unconditionally stable in L2-norm. Numerical experiments show that the proposed method preserves the conservation laws and is effective for simulating the motions and the interactions of solitary waves.
doi_str_mv 10.1016/j.amc.2012.02.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022891665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009630031200149X</els_id><sourcerecordid>1022891665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-fdfb57e67f1960fe901afd7150e0930e201d1209db658efbfcce6f96d42b09003</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKs_wFuOXra-7HazDZ6kaBUFL9VrzCYvNnV30ya7lv57U-pZGBh4fPNghpBrBhMGjN-uJ6rVkxxYPoGDqhMyYrOqyEo-FadkBCB4VgAU5-QixjUAVJxNR-RzuUK6UA2Gb9fRFvuVN9T6QPt0fzEfFLeD6p3v6BBd90UV7XBHaxVdpN7S2Hrfr-jGocadi0j1UDtNN77Zd751qomX5Mwmw6s_H5P3x4fl_Cl7fVs8z-9fM10U0GfW2LqskFeWCQ4WBTBlTcVKQBAFYGpmWA7C1Lycoa2t1sit4Gaa1yBSrzG5Of7dBL8dMPaydVFj06gO_RAlgzyfCcZ5mVB2RHXwMQa0chNcq8I-QfKwplzLtKY8rCnhoCpl7o4ZTB1-HAYZtcNOo3EBdS-Nd_-kfwEl3n2L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022891665</pqid></control><display><type>article</type><title>The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials</title><source>Elsevier ScienceDirect Journals</source><creator>Hao, Shu-Yan ; Xie, Shu-Sen ; Yi, Su-Cheol</creator><creatorcontrib>Hao, Shu-Yan ; Xie, Shu-Sen ; Yi, Su-Cheol</creatorcontrib><description>In this paper, we introduce the Galerkin method using a new basis of smooth piecewise cubic polynomials for the one-dimensional nonlinear KdV equation. The stability analysis shows that the present method is unconditionally stable in L2-norm. Numerical experiments show that the proposed method preserves the conservation laws and is effective for simulating the motions and the interactions of solitary waves.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2012.02.027</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Computer simulation ; Conservation law ; Conservation laws ; Galerkin methods ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Preserves ; Smooth piecewise cubic polynomial ; Solitary waves ; Stability ; The Galerkin method ; The KdV equation</subject><ispartof>Applied mathematics and computation, 2012-05, Vol.218 (17), p.8659-8671</ispartof><rights>2012 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-fdfb57e67f1960fe901afd7150e0930e201d1209db658efbfcce6f96d42b09003</citedby><cites>FETCH-LOGICAL-c330t-fdfb57e67f1960fe901afd7150e0930e201d1209db658efbfcce6f96d42b09003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009630031200149X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hao, Shu-Yan</creatorcontrib><creatorcontrib>Xie, Shu-Sen</creatorcontrib><creatorcontrib>Yi, Su-Cheol</creatorcontrib><title>The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials</title><title>Applied mathematics and computation</title><description>In this paper, we introduce the Galerkin method using a new basis of smooth piecewise cubic polynomials for the one-dimensional nonlinear KdV equation. The stability analysis shows that the present method is unconditionally stable in L2-norm. Numerical experiments show that the proposed method preserves the conservation laws and is effective for simulating the motions and the interactions of solitary waves.</description><subject>Computer simulation</subject><subject>Conservation law</subject><subject>Conservation laws</subject><subject>Galerkin methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Preserves</subject><subject>Smooth piecewise cubic polynomial</subject><subject>Solitary waves</subject><subject>Stability</subject><subject>The Galerkin method</subject><subject>The KdV equation</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEUhIMoWKs_wFuOXra-7HazDZ6kaBUFL9VrzCYvNnV30ya7lv57U-pZGBh4fPNghpBrBhMGjN-uJ6rVkxxYPoGDqhMyYrOqyEo-FadkBCB4VgAU5-QixjUAVJxNR-RzuUK6UA2Gb9fRFvuVN9T6QPt0fzEfFLeD6p3v6BBd90UV7XBHaxVdpN7S2Hrfr-jGocadi0j1UDtNN77Zd751qomX5Mwmw6s_H5P3x4fl_Cl7fVs8z-9fM10U0GfW2LqskFeWCQ4WBTBlTcVKQBAFYGpmWA7C1Lycoa2t1sit4Gaa1yBSrzG5Of7dBL8dMPaydVFj06gO_RAlgzyfCcZ5mVB2RHXwMQa0chNcq8I-QfKwplzLtKY8rCnhoCpl7o4ZTB1-HAYZtcNOo3EBdS-Nd_-kfwEl3n2L</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Hao, Shu-Yan</creator><creator>Xie, Shu-Sen</creator><creator>Yi, Su-Cheol</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120501</creationdate><title>The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials</title><author>Hao, Shu-Yan ; Xie, Shu-Sen ; Yi, Su-Cheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-fdfb57e67f1960fe901afd7150e0930e201d1209db658efbfcce6f96d42b09003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer simulation</topic><topic>Conservation law</topic><topic>Conservation laws</topic><topic>Galerkin methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Preserves</topic><topic>Smooth piecewise cubic polynomial</topic><topic>Solitary waves</topic><topic>Stability</topic><topic>The Galerkin method</topic><topic>The KdV equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Shu-Yan</creatorcontrib><creatorcontrib>Xie, Shu-Sen</creatorcontrib><creatorcontrib>Yi, Su-Cheol</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Shu-Yan</au><au>Xie, Shu-Sen</au><au>Yi, Su-Cheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials</atitle><jtitle>Applied mathematics and computation</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>218</volume><issue>17</issue><spage>8659</spage><epage>8671</epage><pages>8659-8671</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>In this paper, we introduce the Galerkin method using a new basis of smooth piecewise cubic polynomials for the one-dimensional nonlinear KdV equation. The stability analysis shows that the present method is unconditionally stable in L2-norm. Numerical experiments show that the proposed method preserves the conservation laws and is effective for simulating the motions and the interactions of solitary waves.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2012.02.027</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2012-05, Vol.218 (17), p.8659-8671
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1022891665
source Elsevier ScienceDirect Journals
subjects Computer simulation
Conservation law
Conservation laws
Galerkin methods
Mathematical analysis
Mathematical models
Nonlinearity
Preserves
Smooth piecewise cubic polynomial
Solitary waves
Stability
The Galerkin method
The KdV equation
title The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Galerkin%20method%20for%20the%20KdV%20equation%20using%20a%20new%20basis%20of%20smooth%20piecewise%20cubic%20polynomials&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Hao,%20Shu-Yan&rft.date=2012-05-01&rft.volume=218&rft.issue=17&rft.spage=8659&rft.epage=8671&rft.pages=8659-8671&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2012.02.027&rft_dat=%3Cproquest_cross%3E1022891665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022891665&rft_id=info:pmid/&rft_els_id=S009630031200149X&rfr_iscdi=true