The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials
In this paper, we introduce the Galerkin method using a new basis of smooth piecewise cubic polynomials for the one-dimensional nonlinear KdV equation. The stability analysis shows that the present method is unconditionally stable in L2-norm. Numerical experiments show that the proposed method prese...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2012-05, Vol.218 (17), p.8659-8671 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8671 |
---|---|
container_issue | 17 |
container_start_page | 8659 |
container_title | Applied mathematics and computation |
container_volume | 218 |
creator | Hao, Shu-Yan Xie, Shu-Sen Yi, Su-Cheol |
description | In this paper, we introduce the Galerkin method using a new basis of smooth piecewise cubic polynomials for the one-dimensional nonlinear KdV equation. The stability analysis shows that the present method is unconditionally stable in L2-norm. Numerical experiments show that the proposed method preserves the conservation laws and is effective for simulating the motions and the interactions of solitary waves. |
doi_str_mv | 10.1016/j.amc.2012.02.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022891665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009630031200149X</els_id><sourcerecordid>1022891665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-fdfb57e67f1960fe901afd7150e0930e201d1209db658efbfcce6f96d42b09003</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKs_wFuOXra-7HazDZ6kaBUFL9VrzCYvNnV30ya7lv57U-pZGBh4fPNghpBrBhMGjN-uJ6rVkxxYPoGDqhMyYrOqyEo-FadkBCB4VgAU5-QixjUAVJxNR-RzuUK6UA2Gb9fRFvuVN9T6QPt0fzEfFLeD6p3v6BBd90UV7XBHaxVdpN7S2Hrfr-jGocadi0j1UDtNN77Zd751qomX5Mwmw6s_H5P3x4fl_Cl7fVs8z-9fM10U0GfW2LqskFeWCQ4WBTBlTcVKQBAFYGpmWA7C1Lycoa2t1sit4Gaa1yBSrzG5Of7dBL8dMPaydVFj06gO_RAlgzyfCcZ5mVB2RHXwMQa0chNcq8I-QfKwplzLtKY8rCnhoCpl7o4ZTB1-HAYZtcNOo3EBdS-Nd_-kfwEl3n2L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022891665</pqid></control><display><type>article</type><title>The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials</title><source>Elsevier ScienceDirect Journals</source><creator>Hao, Shu-Yan ; Xie, Shu-Sen ; Yi, Su-Cheol</creator><creatorcontrib>Hao, Shu-Yan ; Xie, Shu-Sen ; Yi, Su-Cheol</creatorcontrib><description>In this paper, we introduce the Galerkin method using a new basis of smooth piecewise cubic polynomials for the one-dimensional nonlinear KdV equation. The stability analysis shows that the present method is unconditionally stable in L2-norm. Numerical experiments show that the proposed method preserves the conservation laws and is effective for simulating the motions and the interactions of solitary waves.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2012.02.027</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Computer simulation ; Conservation law ; Conservation laws ; Galerkin methods ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Preserves ; Smooth piecewise cubic polynomial ; Solitary waves ; Stability ; The Galerkin method ; The KdV equation</subject><ispartof>Applied mathematics and computation, 2012-05, Vol.218 (17), p.8659-8671</ispartof><rights>2012 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-fdfb57e67f1960fe901afd7150e0930e201d1209db658efbfcce6f96d42b09003</citedby><cites>FETCH-LOGICAL-c330t-fdfb57e67f1960fe901afd7150e0930e201d1209db658efbfcce6f96d42b09003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009630031200149X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hao, Shu-Yan</creatorcontrib><creatorcontrib>Xie, Shu-Sen</creatorcontrib><creatorcontrib>Yi, Su-Cheol</creatorcontrib><title>The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials</title><title>Applied mathematics and computation</title><description>In this paper, we introduce the Galerkin method using a new basis of smooth piecewise cubic polynomials for the one-dimensional nonlinear KdV equation. The stability analysis shows that the present method is unconditionally stable in L2-norm. Numerical experiments show that the proposed method preserves the conservation laws and is effective for simulating the motions and the interactions of solitary waves.</description><subject>Computer simulation</subject><subject>Conservation law</subject><subject>Conservation laws</subject><subject>Galerkin methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Preserves</subject><subject>Smooth piecewise cubic polynomial</subject><subject>Solitary waves</subject><subject>Stability</subject><subject>The Galerkin method</subject><subject>The KdV equation</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEUhIMoWKs_wFuOXra-7HazDZ6kaBUFL9VrzCYvNnV30ya7lv57U-pZGBh4fPNghpBrBhMGjN-uJ6rVkxxYPoGDqhMyYrOqyEo-FadkBCB4VgAU5-QixjUAVJxNR-RzuUK6UA2Gb9fRFvuVN9T6QPt0fzEfFLeD6p3v6BBd90UV7XBHaxVdpN7S2Hrfr-jGocadi0j1UDtNN77Zd751qomX5Mwmw6s_H5P3x4fl_Cl7fVs8z-9fM10U0GfW2LqskFeWCQ4WBTBlTcVKQBAFYGpmWA7C1Lycoa2t1sit4Gaa1yBSrzG5Of7dBL8dMPaydVFj06gO_RAlgzyfCcZ5mVB2RHXwMQa0chNcq8I-QfKwplzLtKY8rCnhoCpl7o4ZTB1-HAYZtcNOo3EBdS-Nd_-kfwEl3n2L</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Hao, Shu-Yan</creator><creator>Xie, Shu-Sen</creator><creator>Yi, Su-Cheol</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120501</creationdate><title>The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials</title><author>Hao, Shu-Yan ; Xie, Shu-Sen ; Yi, Su-Cheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-fdfb57e67f1960fe901afd7150e0930e201d1209db658efbfcce6f96d42b09003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer simulation</topic><topic>Conservation law</topic><topic>Conservation laws</topic><topic>Galerkin methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Preserves</topic><topic>Smooth piecewise cubic polynomial</topic><topic>Solitary waves</topic><topic>Stability</topic><topic>The Galerkin method</topic><topic>The KdV equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Shu-Yan</creatorcontrib><creatorcontrib>Xie, Shu-Sen</creatorcontrib><creatorcontrib>Yi, Su-Cheol</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Shu-Yan</au><au>Xie, Shu-Sen</au><au>Yi, Su-Cheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials</atitle><jtitle>Applied mathematics and computation</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>218</volume><issue>17</issue><spage>8659</spage><epage>8671</epage><pages>8659-8671</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>In this paper, we introduce the Galerkin method using a new basis of smooth piecewise cubic polynomials for the one-dimensional nonlinear KdV equation. The stability analysis shows that the present method is unconditionally stable in L2-norm. Numerical experiments show that the proposed method preserves the conservation laws and is effective for simulating the motions and the interactions of solitary waves.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2012.02.027</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2012-05, Vol.218 (17), p.8659-8671 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1022891665 |
source | Elsevier ScienceDirect Journals |
subjects | Computer simulation Conservation law Conservation laws Galerkin methods Mathematical analysis Mathematical models Nonlinearity Preserves Smooth piecewise cubic polynomial Solitary waves Stability The Galerkin method The KdV equation |
title | The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Galerkin%20method%20for%20the%20KdV%20equation%20using%20a%20new%20basis%20of%20smooth%20piecewise%20cubic%20polynomials&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Hao,%20Shu-Yan&rft.date=2012-05-01&rft.volume=218&rft.issue=17&rft.spage=8659&rft.epage=8671&rft.pages=8659-8671&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2012.02.027&rft_dat=%3Cproquest_cross%3E1022891665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022891665&rft_id=info:pmid/&rft_els_id=S009630031200149X&rfr_iscdi=true |