Non-adiabatic quantum evolution: The S matrix as a geometrical phase factor

We present a complete derivation of the exact evolution of quantum mechanics for the case when the underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We show that a quantum system being in an eigenstate of an invariant will remain in the subspace gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2012-03, Vol.376 (16), p.1328-1334
Hauptverfasser: Saadi, Y., Maamache, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1334
container_issue 16
container_start_page 1328
container_title Physics letters. A
container_volume 376
creator Saadi, Y.
Maamache, M.
description We present a complete derivation of the exact evolution of quantum mechanics for the case when the underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We show that a quantum system being in an eigenstate of an invariant will remain in the subspace generated by the eigenstates of the invariant, thereby acquiring a generalized non-adiabatic or Aharonov–Anandan geometric phase linked to the diagonal element of the S matrix. The modified Pöschl–Teller potential and the time-dependent linear potential are worked out as illustrations. ► In this Letter we study the exact quantum evolution for continuous spectra problems. ► We base our discussion on the use of the Weyl eigendifferentials. ► We give a generalized Lewis and Riesenfeld phase for continuous spectra. ► This generalized phase or Aharonov–Anandan geometric phase is linked to the S matrix. ► The modified Pöschl–Teller and the linear potential are worked out as illustrations.
doi_str_mv 10.1016/j.physleta.2012.02.054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022890053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960112002496</els_id><sourcerecordid>1022890053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-2694e6acd4bbc7978362f7c75d896e60cbe55ae44578a76640c7ae2c8cd73c2b3</originalsourceid><addsrcrecordid>eNqFkE9r3DAQxUVoINukXyHo2Is3sqw_dk8toUlDl-aQ5CzG49msFttyJHlJvn0dtj0HHjwGfu_BPMYuS7EuRWmu9utp95Z6yrCWopRrsUirE7Yqa1sVUsnmE1uJyuqiMaI8Y59T2guxJEWzYr__hLGAzkML2SN_mWHM88DpEPo5-zB-44874g98gBz9K4fEgT9TGGg5EXo-7SAR3wLmEC_Y6Rb6RF_--Tl7uvn5eP2r2Nzf3l3_2BRYKZ0LaRpFBrBTbYu2sXVl5Nai1V3dGDICW9IaSClta7DGKIEWSGKNna1QttU5-3rsnWJ4mSllN_iE1PcwUpiTK4WUdSOErhbUHFGMIaVIWzdFP0B8WyD3vp7bu__ruff1nFik1RL8fgzS8sjBU3QJPY1InY-E2XXBf1TxFxqGfFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022890053</pqid></control><display><type>article</type><title>Non-adiabatic quantum evolution: The S matrix as a geometrical phase factor</title><source>Elsevier ScienceDirect Journals</source><creator>Saadi, Y. ; Maamache, M.</creator><creatorcontrib>Saadi, Y. ; Maamache, M.</creatorcontrib><description>We present a complete derivation of the exact evolution of quantum mechanics for the case when the underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We show that a quantum system being in an eigenstate of an invariant will remain in the subspace generated by the eigenstates of the invariant, thereby acquiring a generalized non-adiabatic or Aharonov–Anandan geometric phase linked to the diagonal element of the S matrix. The modified Pöschl–Teller potential and the time-dependent linear potential are worked out as illustrations. ► In this Letter we study the exact quantum evolution for continuous spectra problems. ► We base our discussion on the use of the Weyl eigendifferentials. ► We give a generalized Lewis and Riesenfeld phase for continuous spectra. ► This generalized phase or Aharonov–Anandan geometric phase is linked to the S matrix. ► The modified Pöschl–Teller and the linear potential are worked out as illustrations.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2012.02.054</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Continuous spectrum ; Derivation ; Evolution ; Geometrical phase ; Illustrations ; Invariants ; Lewis and Riesenfeld theory ; Non-adiabatic evolution ; Quantum mechanics ; Quantum theory ; Scattering matrix ; Solid state physics ; Subspaces</subject><ispartof>Physics letters. A, 2012-03, Vol.376 (16), p.1328-1334</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-2694e6acd4bbc7978362f7c75d896e60cbe55ae44578a76640c7ae2c8cd73c2b3</citedby><cites>FETCH-LOGICAL-c345t-2694e6acd4bbc7978362f7c75d896e60cbe55ae44578a76640c7ae2c8cd73c2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0375960112002496$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Saadi, Y.</creatorcontrib><creatorcontrib>Maamache, M.</creatorcontrib><title>Non-adiabatic quantum evolution: The S matrix as a geometrical phase factor</title><title>Physics letters. A</title><description>We present a complete derivation of the exact evolution of quantum mechanics for the case when the underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We show that a quantum system being in an eigenstate of an invariant will remain in the subspace generated by the eigenstates of the invariant, thereby acquiring a generalized non-adiabatic or Aharonov–Anandan geometric phase linked to the diagonal element of the S matrix. The modified Pöschl–Teller potential and the time-dependent linear potential are worked out as illustrations. ► In this Letter we study the exact quantum evolution for continuous spectra problems. ► We base our discussion on the use of the Weyl eigendifferentials. ► We give a generalized Lewis and Riesenfeld phase for continuous spectra. ► This generalized phase or Aharonov–Anandan geometric phase is linked to the S matrix. ► The modified Pöschl–Teller and the linear potential are worked out as illustrations.</description><subject>Continuous spectrum</subject><subject>Derivation</subject><subject>Evolution</subject><subject>Geometrical phase</subject><subject>Illustrations</subject><subject>Invariants</subject><subject>Lewis and Riesenfeld theory</subject><subject>Non-adiabatic evolution</subject><subject>Quantum mechanics</subject><subject>Quantum theory</subject><subject>Scattering matrix</subject><subject>Solid state physics</subject><subject>Subspaces</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE9r3DAQxUVoINukXyHo2Is3sqw_dk8toUlDl-aQ5CzG49msFttyJHlJvn0dtj0HHjwGfu_BPMYuS7EuRWmu9utp95Z6yrCWopRrsUirE7Yqa1sVUsnmE1uJyuqiMaI8Y59T2guxJEWzYr__hLGAzkML2SN_mWHM88DpEPo5-zB-44874g98gBz9K4fEgT9TGGg5EXo-7SAR3wLmEC_Y6Rb6RF_--Tl7uvn5eP2r2Nzf3l3_2BRYKZ0LaRpFBrBTbYu2sXVl5Nai1V3dGDICW9IaSClta7DGKIEWSGKNna1QttU5-3rsnWJ4mSllN_iE1PcwUpiTK4WUdSOErhbUHFGMIaVIWzdFP0B8WyD3vp7bu__ruff1nFik1RL8fgzS8sjBU3QJPY1InY-E2XXBf1TxFxqGfFs</recordid><startdate>20120319</startdate><enddate>20120319</enddate><creator>Saadi, Y.</creator><creator>Maamache, M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120319</creationdate><title>Non-adiabatic quantum evolution: The S matrix as a geometrical phase factor</title><author>Saadi, Y. ; Maamache, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-2694e6acd4bbc7978362f7c75d896e60cbe55ae44578a76640c7ae2c8cd73c2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Continuous spectrum</topic><topic>Derivation</topic><topic>Evolution</topic><topic>Geometrical phase</topic><topic>Illustrations</topic><topic>Invariants</topic><topic>Lewis and Riesenfeld theory</topic><topic>Non-adiabatic evolution</topic><topic>Quantum mechanics</topic><topic>Quantum theory</topic><topic>Scattering matrix</topic><topic>Solid state physics</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saadi, Y.</creatorcontrib><creatorcontrib>Maamache, M.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saadi, Y.</au><au>Maamache, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-adiabatic quantum evolution: The S matrix as a geometrical phase factor</atitle><jtitle>Physics letters. A</jtitle><date>2012-03-19</date><risdate>2012</risdate><volume>376</volume><issue>16</issue><spage>1328</spage><epage>1334</epage><pages>1328-1334</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>We present a complete derivation of the exact evolution of quantum mechanics for the case when the underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We show that a quantum system being in an eigenstate of an invariant will remain in the subspace generated by the eigenstates of the invariant, thereby acquiring a generalized non-adiabatic or Aharonov–Anandan geometric phase linked to the diagonal element of the S matrix. The modified Pöschl–Teller potential and the time-dependent linear potential are worked out as illustrations. ► In this Letter we study the exact quantum evolution for continuous spectra problems. ► We base our discussion on the use of the Weyl eigendifferentials. ► We give a generalized Lewis and Riesenfeld phase for continuous spectra. ► This generalized phase or Aharonov–Anandan geometric phase is linked to the S matrix. ► The modified Pöschl–Teller and the linear potential are worked out as illustrations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2012.02.054</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0375-9601
ispartof Physics letters. A, 2012-03, Vol.376 (16), p.1328-1334
issn 0375-9601
1873-2429
language eng
recordid cdi_proquest_miscellaneous_1022890053
source Elsevier ScienceDirect Journals
subjects Continuous spectrum
Derivation
Evolution
Geometrical phase
Illustrations
Invariants
Lewis and Riesenfeld theory
Non-adiabatic evolution
Quantum mechanics
Quantum theory
Scattering matrix
Solid state physics
Subspaces
title Non-adiabatic quantum evolution: The S matrix as a geometrical phase factor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-adiabatic%20quantum%20evolution:%20The%20S%20matrix%20as%20a%20geometrical%20phase%20factor&rft.jtitle=Physics%20letters.%20A&rft.au=Saadi,%20Y.&rft.date=2012-03-19&rft.volume=376&rft.issue=16&rft.spage=1328&rft.epage=1334&rft.pages=1328-1334&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2012.02.054&rft_dat=%3Cproquest_cross%3E1022890053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022890053&rft_id=info:pmid/&rft_els_id=S0375960112002496&rfr_iscdi=true