Microstructure and nano-scratch behaviors of La0.7Sr0.3MnO3 films
The La0.7Sr0.3MnO3 (LSMO) films were prepared at various substrate temperatures on si(100) by DC magnetron sputtering method. The microstructure and nano-scratch behaviors of the films were investigated. The results indicate that the films are single phase with perovskite distorted cubic structure a...
Gespeichert in:
Veröffentlicht in: | Thin solid films 2011-05, Vol.519 (15), p.4880-4883 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4883 |
---|---|
container_issue | 15 |
container_start_page | 4880 |
container_title | Thin solid films |
container_volume | 519 |
creator | Jiang, Shaoqun Ma, Xinxin Tang, Guangze Wang, Gang Wang, Zehua Zhou, Zehua |
description | The La0.7Sr0.3MnO3 (LSMO) films were prepared at various substrate temperatures on si(100) by DC magnetron sputtering method. The microstructure and nano-scratch behaviors of the films were investigated. The results indicate that the films are single phase with perovskite distorted cubic structure and the texture orientation changes obviously with the increase of substrate temperature. A smooth and dense nanocrystalline LSMO film is obtained at high substrate temperature. The (110) preferred orientation growth is beneficial to the improvement of nano-scratch resistance of the films. The friction coefficient between the films and the diamond tip depends on the critical load (L c ). Elastic deformation is the dominant deformation mechanism and the friction coefficient is about 0.08-0.14 for all the films when the loading normal load is less than L c . When the loading load is larger than L c , the delamination or detachment of the films occur and the friction coefficient increases abruptly near the L c . The films deposited at 480 degree C and 680 degree C possess higher L c which is about 77mN due to lower hardness. The suitable decrease in hardness can enhance cohesion strength and scratch resistance of the films. |
doi_str_mv | 10.1016/j.tsf.2011.01.046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022889482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022889482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-6a8587659b002b1f04a4cccd0dfd41bb0f4189a4076d19d60918fd2b4e8eba803</originalsourceid><addsrcrecordid>eNo9kM1qwzAQhEVpoWnaB-jNl0IvdnclRZaPIfQPHHJoexZrWSIOjp1KdqFvX4eEwsBcZobdj7F7hAwB1dMuG6LPOCBmMEmqCzZDnRcpzwVeshmAhFRBAdfsJsYdACDnYsaW68aGPg5htMMYXEJdnXTU9Wm0gQa7TSq3pZ-mDzHpfVISZPlHgEysu41IfNPu4y278tRGd3f2Oft6ef5cvaXl5vV9tSxTy4UeUkV6oXO1KCoAXqEHSdJaW0Pta4lVBV6iLkhCrmos6ulU1L7mlXTaVaRBzNnjafcQ-u_RxcHsm2hd21Ln-jEaBM61LqTmUxRP0eNrMThvDqHZU_idQuaIy-zMhMsccRmYJNXUeTjPU7TU-kCdbeJ_kUshlSpy8QfiKWn9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022889482</pqid></control><display><type>article</type><title>Microstructure and nano-scratch behaviors of La0.7Sr0.3MnO3 films</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jiang, Shaoqun ; Ma, Xinxin ; Tang, Guangze ; Wang, Gang ; Wang, Zehua ; Zhou, Zehua</creator><creatorcontrib>Jiang, Shaoqun ; Ma, Xinxin ; Tang, Guangze ; Wang, Gang ; Wang, Zehua ; Zhou, Zehua</creatorcontrib><description>The La0.7Sr0.3MnO3 (LSMO) films were prepared at various substrate temperatures on si(100) by DC magnetron sputtering method. The microstructure and nano-scratch behaviors of the films were investigated. The results indicate that the films are single phase with perovskite distorted cubic structure and the texture orientation changes obviously with the increase of substrate temperature. A smooth and dense nanocrystalline LSMO film is obtained at high substrate temperature. The (110) preferred orientation growth is beneficial to the improvement of nano-scratch resistance of the films. The friction coefficient between the films and the diamond tip depends on the critical load (L c ). Elastic deformation is the dominant deformation mechanism and the friction coefficient is about 0.08-0.14 for all the films when the loading normal load is less than L c . When the loading load is larger than L c , the delamination or detachment of the films occur and the friction coefficient increases abruptly near the L c . The films deposited at 480 degree C and 680 degree C possess higher L c which is about 77mN due to lower hardness. The suitable decrease in hardness can enhance cohesion strength and scratch resistance of the films.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2011.01.046</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Deposition by sputtering ; Exact sciences and technology ; Friction ; Hardness ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Microstructure ; Nanocomposites ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Other topics in nanoscale materials and structures ; Physics ; Structure and morphology; thickness ; Surface layer ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Texture ; Theory and models of film growth ; Thin film structure and morphology</subject><ispartof>Thin solid films, 2011-05, Vol.519 (15), p.4880-4883</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c238t-6a8587659b002b1f04a4cccd0dfd41bb0f4189a4076d19d60918fd2b4e8eba803</citedby><cites>FETCH-LOGICAL-c238t-6a8587659b002b1f04a4cccd0dfd41bb0f4189a4076d19d60918fd2b4e8eba803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24346697$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Shaoqun</creatorcontrib><creatorcontrib>Ma, Xinxin</creatorcontrib><creatorcontrib>Tang, Guangze</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Zehua</creatorcontrib><creatorcontrib>Zhou, Zehua</creatorcontrib><title>Microstructure and nano-scratch behaviors of La0.7Sr0.3MnO3 films</title><title>Thin solid films</title><description>The La0.7Sr0.3MnO3 (LSMO) films were prepared at various substrate temperatures on si(100) by DC magnetron sputtering method. The microstructure and nano-scratch behaviors of the films were investigated. The results indicate that the films are single phase with perovskite distorted cubic structure and the texture orientation changes obviously with the increase of substrate temperature. A smooth and dense nanocrystalline LSMO film is obtained at high substrate temperature. The (110) preferred orientation growth is beneficial to the improvement of nano-scratch resistance of the films. The friction coefficient between the films and the diamond tip depends on the critical load (L c ). Elastic deformation is the dominant deformation mechanism and the friction coefficient is about 0.08-0.14 for all the films when the loading normal load is less than L c . When the loading load is larger than L c , the delamination or detachment of the films occur and the friction coefficient increases abruptly near the L c . The films deposited at 480 degree C and 680 degree C possess higher L c which is about 77mN due to lower hardness. The suitable decrease in hardness can enhance cohesion strength and scratch resistance of the films.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition by sputtering</subject><subject>Exact sciences and technology</subject><subject>Friction</subject><subject>Hardness</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microstructure</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Structure and morphology; thickness</subject><subject>Surface layer</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Texture</subject><subject>Theory and models of film growth</subject><subject>Thin film structure and morphology</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kM1qwzAQhEVpoWnaB-jNl0IvdnclRZaPIfQPHHJoexZrWSIOjp1KdqFvX4eEwsBcZobdj7F7hAwB1dMuG6LPOCBmMEmqCzZDnRcpzwVeshmAhFRBAdfsJsYdACDnYsaW68aGPg5htMMYXEJdnXTU9Wm0gQa7TSq3pZ-mDzHpfVISZPlHgEysu41IfNPu4y278tRGd3f2Oft6ef5cvaXl5vV9tSxTy4UeUkV6oXO1KCoAXqEHSdJaW0Pta4lVBV6iLkhCrmos6ulU1L7mlXTaVaRBzNnjafcQ-u_RxcHsm2hd21Ln-jEaBM61LqTmUxRP0eNrMThvDqHZU_idQuaIy-zMhMsccRmYJNXUeTjPU7TU-kCdbeJ_kUshlSpy8QfiKWn9</recordid><startdate>20110531</startdate><enddate>20110531</enddate><creator>Jiang, Shaoqun</creator><creator>Ma, Xinxin</creator><creator>Tang, Guangze</creator><creator>Wang, Gang</creator><creator>Wang, Zehua</creator><creator>Zhou, Zehua</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110531</creationdate><title>Microstructure and nano-scratch behaviors of La0.7Sr0.3MnO3 films</title><author>Jiang, Shaoqun ; Ma, Xinxin ; Tang, Guangze ; Wang, Gang ; Wang, Zehua ; Zhou, Zehua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-6a8587659b002b1f04a4cccd0dfd41bb0f4189a4076d19d60918fd2b4e8eba803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition by sputtering</topic><topic>Exact sciences and technology</topic><topic>Friction</topic><topic>Hardness</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microstructure</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Structure and morphology; thickness</topic><topic>Surface layer</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Texture</topic><topic>Theory and models of film growth</topic><topic>Thin film structure and morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Shaoqun</creatorcontrib><creatorcontrib>Ma, Xinxin</creatorcontrib><creatorcontrib>Tang, Guangze</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Zehua</creatorcontrib><creatorcontrib>Zhou, Zehua</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Shaoqun</au><au>Ma, Xinxin</au><au>Tang, Guangze</au><au>Wang, Gang</au><au>Wang, Zehua</au><au>Zhou, Zehua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and nano-scratch behaviors of La0.7Sr0.3MnO3 films</atitle><jtitle>Thin solid films</jtitle><date>2011-05-31</date><risdate>2011</risdate><volume>519</volume><issue>15</issue><spage>4880</spage><epage>4883</epage><pages>4880-4883</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>The La0.7Sr0.3MnO3 (LSMO) films were prepared at various substrate temperatures on si(100) by DC magnetron sputtering method. The microstructure and nano-scratch behaviors of the films were investigated. The results indicate that the films are single phase with perovskite distorted cubic structure and the texture orientation changes obviously with the increase of substrate temperature. A smooth and dense nanocrystalline LSMO film is obtained at high substrate temperature. The (110) preferred orientation growth is beneficial to the improvement of nano-scratch resistance of the films. The friction coefficient between the films and the diamond tip depends on the critical load (L c ). Elastic deformation is the dominant deformation mechanism and the friction coefficient is about 0.08-0.14 for all the films when the loading normal load is less than L c . When the loading load is larger than L c , the delamination or detachment of the films occur and the friction coefficient increases abruptly near the L c . The films deposited at 480 degree C and 680 degree C possess higher L c which is about 77mN due to lower hardness. The suitable decrease in hardness can enhance cohesion strength and scratch resistance of the films.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.tsf.2011.01.046</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2011-05, Vol.519 (15), p.4880-4883 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_proquest_miscellaneous_1022889482 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Deposition by sputtering Exact sciences and technology Friction Hardness Materials science Methods of deposition of films and coatings film growth and epitaxy Microstructure Nanocomposites Nanomaterials Nanoscale materials and structures: fabrication and characterization Nanostructure Other topics in nanoscale materials and structures Physics Structure and morphology thickness Surface layer Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Texture Theory and models of film growth Thin film structure and morphology |
title | Microstructure and nano-scratch behaviors of La0.7Sr0.3MnO3 films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20nano-scratch%20behaviors%20of%20La0.7Sr0.3MnO3%20films&rft.jtitle=Thin%20solid%20films&rft.au=Jiang,%20Shaoqun&rft.date=2011-05-31&rft.volume=519&rft.issue=15&rft.spage=4880&rft.epage=4883&rft.pages=4880-4883&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2011.01.046&rft_dat=%3Cproquest_cross%3E1022889482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022889482&rft_id=info:pmid/&rfr_iscdi=true |