Microstructure and nano-scratch behaviors of La0.7Sr0.3MnO3 films

The La0.7Sr0.3MnO3 (LSMO) films were prepared at various substrate temperatures on si(100) by DC magnetron sputtering method. The microstructure and nano-scratch behaviors of the films were investigated. The results indicate that the films are single phase with perovskite distorted cubic structure a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2011-05, Vol.519 (15), p.4880-4883
Hauptverfasser: Jiang, Shaoqun, Ma, Xinxin, Tang, Guangze, Wang, Gang, Wang, Zehua, Zhou, Zehua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4883
container_issue 15
container_start_page 4880
container_title Thin solid films
container_volume 519
creator Jiang, Shaoqun
Ma, Xinxin
Tang, Guangze
Wang, Gang
Wang, Zehua
Zhou, Zehua
description The La0.7Sr0.3MnO3 (LSMO) films were prepared at various substrate temperatures on si(100) by DC magnetron sputtering method. The microstructure and nano-scratch behaviors of the films were investigated. The results indicate that the films are single phase with perovskite distorted cubic structure and the texture orientation changes obviously with the increase of substrate temperature. A smooth and dense nanocrystalline LSMO film is obtained at high substrate temperature. The (110) preferred orientation growth is beneficial to the improvement of nano-scratch resistance of the films. The friction coefficient between the films and the diamond tip depends on the critical load (L c ). Elastic deformation is the dominant deformation mechanism and the friction coefficient is about 0.08-0.14 for all the films when the loading normal load is less than L c . When the loading load is larger than L c , the delamination or detachment of the films occur and the friction coefficient increases abruptly near the L c . The films deposited at 480 degree C and 680 degree C possess higher L c which is about 77mN due to lower hardness. The suitable decrease in hardness can enhance cohesion strength and scratch resistance of the films.
doi_str_mv 10.1016/j.tsf.2011.01.046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022889482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022889482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-6a8587659b002b1f04a4cccd0dfd41bb0f4189a4076d19d60918fd2b4e8eba803</originalsourceid><addsrcrecordid>eNo9kM1qwzAQhEVpoWnaB-jNl0IvdnclRZaPIfQPHHJoexZrWSIOjp1KdqFvX4eEwsBcZobdj7F7hAwB1dMuG6LPOCBmMEmqCzZDnRcpzwVeshmAhFRBAdfsJsYdACDnYsaW68aGPg5htMMYXEJdnXTU9Wm0gQa7TSq3pZ-mDzHpfVISZPlHgEysu41IfNPu4y278tRGd3f2Oft6ef5cvaXl5vV9tSxTy4UeUkV6oXO1KCoAXqEHSdJaW0Pta4lVBV6iLkhCrmos6ulU1L7mlXTaVaRBzNnjafcQ-u_RxcHsm2hd21Ln-jEaBM61LqTmUxRP0eNrMThvDqHZU_idQuaIy-zMhMsccRmYJNXUeTjPU7TU-kCdbeJ_kUshlSpy8QfiKWn9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022889482</pqid></control><display><type>article</type><title>Microstructure and nano-scratch behaviors of La0.7Sr0.3MnO3 films</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jiang, Shaoqun ; Ma, Xinxin ; Tang, Guangze ; Wang, Gang ; Wang, Zehua ; Zhou, Zehua</creator><creatorcontrib>Jiang, Shaoqun ; Ma, Xinxin ; Tang, Guangze ; Wang, Gang ; Wang, Zehua ; Zhou, Zehua</creatorcontrib><description>The La0.7Sr0.3MnO3 (LSMO) films were prepared at various substrate temperatures on si(100) by DC magnetron sputtering method. The microstructure and nano-scratch behaviors of the films were investigated. The results indicate that the films are single phase with perovskite distorted cubic structure and the texture orientation changes obviously with the increase of substrate temperature. A smooth and dense nanocrystalline LSMO film is obtained at high substrate temperature. The (110) preferred orientation growth is beneficial to the improvement of nano-scratch resistance of the films. The friction coefficient between the films and the diamond tip depends on the critical load (L c ). Elastic deformation is the dominant deformation mechanism and the friction coefficient is about 0.08-0.14 for all the films when the loading normal load is less than L c . When the loading load is larger than L c , the delamination or detachment of the films occur and the friction coefficient increases abruptly near the L c . The films deposited at 480 degree C and 680 degree C possess higher L c which is about 77mN due to lower hardness. The suitable decrease in hardness can enhance cohesion strength and scratch resistance of the films.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2011.01.046</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Deposition by sputtering ; Exact sciences and technology ; Friction ; Hardness ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Microstructure ; Nanocomposites ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Other topics in nanoscale materials and structures ; Physics ; Structure and morphology; thickness ; Surface layer ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Texture ; Theory and models of film growth ; Thin film structure and morphology</subject><ispartof>Thin solid films, 2011-05, Vol.519 (15), p.4880-4883</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c238t-6a8587659b002b1f04a4cccd0dfd41bb0f4189a4076d19d60918fd2b4e8eba803</citedby><cites>FETCH-LOGICAL-c238t-6a8587659b002b1f04a4cccd0dfd41bb0f4189a4076d19d60918fd2b4e8eba803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24346697$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Shaoqun</creatorcontrib><creatorcontrib>Ma, Xinxin</creatorcontrib><creatorcontrib>Tang, Guangze</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Zehua</creatorcontrib><creatorcontrib>Zhou, Zehua</creatorcontrib><title>Microstructure and nano-scratch behaviors of La0.7Sr0.3MnO3 films</title><title>Thin solid films</title><description>The La0.7Sr0.3MnO3 (LSMO) films were prepared at various substrate temperatures on si(100) by DC magnetron sputtering method. The microstructure and nano-scratch behaviors of the films were investigated. The results indicate that the films are single phase with perovskite distorted cubic structure and the texture orientation changes obviously with the increase of substrate temperature. A smooth and dense nanocrystalline LSMO film is obtained at high substrate temperature. The (110) preferred orientation growth is beneficial to the improvement of nano-scratch resistance of the films. The friction coefficient between the films and the diamond tip depends on the critical load (L c ). Elastic deformation is the dominant deformation mechanism and the friction coefficient is about 0.08-0.14 for all the films when the loading normal load is less than L c . When the loading load is larger than L c , the delamination or detachment of the films occur and the friction coefficient increases abruptly near the L c . The films deposited at 480 degree C and 680 degree C possess higher L c which is about 77mN due to lower hardness. The suitable decrease in hardness can enhance cohesion strength and scratch resistance of the films.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition by sputtering</subject><subject>Exact sciences and technology</subject><subject>Friction</subject><subject>Hardness</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microstructure</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Structure and morphology; thickness</subject><subject>Surface layer</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Texture</subject><subject>Theory and models of film growth</subject><subject>Thin film structure and morphology</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kM1qwzAQhEVpoWnaB-jNl0IvdnclRZaPIfQPHHJoexZrWSIOjp1KdqFvX4eEwsBcZobdj7F7hAwB1dMuG6LPOCBmMEmqCzZDnRcpzwVeshmAhFRBAdfsJsYdACDnYsaW68aGPg5htMMYXEJdnXTU9Wm0gQa7TSq3pZ-mDzHpfVISZPlHgEysu41IfNPu4y278tRGd3f2Oft6ef5cvaXl5vV9tSxTy4UeUkV6oXO1KCoAXqEHSdJaW0Pta4lVBV6iLkhCrmos6ulU1L7mlXTaVaRBzNnjafcQ-u_RxcHsm2hd21Ln-jEaBM61LqTmUxRP0eNrMThvDqHZU_idQuaIy-zMhMsccRmYJNXUeTjPU7TU-kCdbeJ_kUshlSpy8QfiKWn9</recordid><startdate>20110531</startdate><enddate>20110531</enddate><creator>Jiang, Shaoqun</creator><creator>Ma, Xinxin</creator><creator>Tang, Guangze</creator><creator>Wang, Gang</creator><creator>Wang, Zehua</creator><creator>Zhou, Zehua</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110531</creationdate><title>Microstructure and nano-scratch behaviors of La0.7Sr0.3MnO3 films</title><author>Jiang, Shaoqun ; Ma, Xinxin ; Tang, Guangze ; Wang, Gang ; Wang, Zehua ; Zhou, Zehua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-6a8587659b002b1f04a4cccd0dfd41bb0f4189a4076d19d60918fd2b4e8eba803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition by sputtering</topic><topic>Exact sciences and technology</topic><topic>Friction</topic><topic>Hardness</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microstructure</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Structure and morphology; thickness</topic><topic>Surface layer</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Texture</topic><topic>Theory and models of film growth</topic><topic>Thin film structure and morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Shaoqun</creatorcontrib><creatorcontrib>Ma, Xinxin</creatorcontrib><creatorcontrib>Tang, Guangze</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Zehua</creatorcontrib><creatorcontrib>Zhou, Zehua</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Shaoqun</au><au>Ma, Xinxin</au><au>Tang, Guangze</au><au>Wang, Gang</au><au>Wang, Zehua</au><au>Zhou, Zehua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and nano-scratch behaviors of La0.7Sr0.3MnO3 films</atitle><jtitle>Thin solid films</jtitle><date>2011-05-31</date><risdate>2011</risdate><volume>519</volume><issue>15</issue><spage>4880</spage><epage>4883</epage><pages>4880-4883</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>The La0.7Sr0.3MnO3 (LSMO) films were prepared at various substrate temperatures on si(100) by DC magnetron sputtering method. The microstructure and nano-scratch behaviors of the films were investigated. The results indicate that the films are single phase with perovskite distorted cubic structure and the texture orientation changes obviously with the increase of substrate temperature. A smooth and dense nanocrystalline LSMO film is obtained at high substrate temperature. The (110) preferred orientation growth is beneficial to the improvement of nano-scratch resistance of the films. The friction coefficient between the films and the diamond tip depends on the critical load (L c ). Elastic deformation is the dominant deformation mechanism and the friction coefficient is about 0.08-0.14 for all the films when the loading normal load is less than L c . When the loading load is larger than L c , the delamination or detachment of the films occur and the friction coefficient increases abruptly near the L c . The films deposited at 480 degree C and 680 degree C possess higher L c which is about 77mN due to lower hardness. The suitable decrease in hardness can enhance cohesion strength and scratch resistance of the films.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.tsf.2011.01.046</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2011-05, Vol.519 (15), p.4880-4883
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1022889482
source ScienceDirect Journals (5 years ago - present)
subjects Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Deposition by sputtering
Exact sciences and technology
Friction
Hardness
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Microstructure
Nanocomposites
Nanomaterials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Other topics in nanoscale materials and structures
Physics
Structure and morphology
thickness
Surface layer
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Texture
Theory and models of film growth
Thin film structure and morphology
title Microstructure and nano-scratch behaviors of La0.7Sr0.3MnO3 films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20nano-scratch%20behaviors%20of%20La0.7Sr0.3MnO3%20films&rft.jtitle=Thin%20solid%20films&rft.au=Jiang,%20Shaoqun&rft.date=2011-05-31&rft.volume=519&rft.issue=15&rft.spage=4880&rft.epage=4883&rft.pages=4880-4883&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2011.01.046&rft_dat=%3Cproquest_cross%3E1022889482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022889482&rft_id=info:pmid/&rfr_iscdi=true