Coherent control of three-spin states in a triple quantum dot

Manipulating the electrons trapped in quantum-dot pairs is one possible route to quantum computation. Translating this idea to three quantum dots would enable a whole host of extended functionality. Researchers now generate and manipulate coherent superpositions of quantum states using the spins acr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2012-01, Vol.8 (1), p.54-58
Hauptverfasser: Gaudreau, L., Granger, G., Kam, A., Aers, G. C., Studenikin, S. A., Zawadzki, P., Pioro-Ladrière, M., Wasilewski, Z. R., Sachrajda, A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 54
container_title Nature physics
container_volume 8
creator Gaudreau, L.
Granger, G.
Kam, A.
Aers, G. C.
Studenikin, S. A.
Zawadzki, P.
Pioro-Ladrière, M.
Wasilewski, Z. R.
Sachrajda, A. S.
description Manipulating the electrons trapped in quantum-dot pairs is one possible route to quantum computation. Translating this idea to three quantum dots would enable a whole host of extended functionality. Researchers now generate and manipulate coherent superpositions of quantum states using the spins across three electrical-gate-defined dots. Spin qubits involving individual spins in single quantum dots or coupled spins in double quantum dots have emerged as potential building blocks for quantum information processing applications 1 , 2 , 3 , 4 . It has been suggested that triple quantum dots may provide additional tools and functionalities. These include encoding information either to obtain protection from decoherence or to permit all-electrical operation 5 , efficient spin busing across a quantum circuit 6 , and to enable quantum error correction using the three-spin Greenberger-Horn-Zeilinger quantum state. Towards these goals we demonstrate coherent manipulation of two interacting three-spin states. We employ the Landau–Zener–Stückelberg 7 , 8 approach for creating and manipulating coherent superpositions of quantum states 9 . We confirm that we are able to maintain coherence when decreasing the exchange coupling of one spin with another while simultaneously increasing its coupling with the third. Such control of pairwise exchange is a requirement of most spin qubit architectures 10 , but has not been previously demonstrated.
doi_str_mv 10.1038/nphys2149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022889411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022889411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-78a6cf14d480951032bea9123103fba1b398fc1df3e09675a9ff8e34ad9e98513</originalsourceid><addsrcrecordid>eNpl0E9LwzAYBvAgCs7pwW8QPKlQTZq0zXvwIMN_MPCi55K1b1xHl3RJeti3N2MyQU_vc_jx8PAScsnZHWdC3dthuQ05l3BEJrySRZZLxY8PuRKn5CyEFWMyL7mYkIeZW6JHG2njbPSup87QuPSIWRg6S0PUEQNNSdPou6FHuhm1jeOati6ekxOj-4AXP3dKPp-fPmav2fz95W32OM8aCSxmldJlY7hspWJQpJ35AjXwXKRoFpovBCjT8NYIZFBWhQZjFAqpW0BQBRdTcr3vHbzbjBhive5Cg32vLbox1JzluVIg-Y5e_aErN3qb1tUAAqCUSiR0s0eNdyF4NPXgu7X229RU7_5YH_6Y7O3ehmTsF_rfwv_4G9YRc5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>993996483</pqid></control><display><type>article</type><title>Coherent control of three-spin states in a triple quantum dot</title><source>SpringerLink Journals</source><source>Nature</source><creator>Gaudreau, L. ; Granger, G. ; Kam, A. ; Aers, G. C. ; Studenikin, S. A. ; Zawadzki, P. ; Pioro-Ladrière, M. ; Wasilewski, Z. R. ; Sachrajda, A. S.</creator><creatorcontrib>Gaudreau, L. ; Granger, G. ; Kam, A. ; Aers, G. C. ; Studenikin, S. A. ; Zawadzki, P. ; Pioro-Ladrière, M. ; Wasilewski, Z. R. ; Sachrajda, A. S.</creatorcontrib><description>Manipulating the electrons trapped in quantum-dot pairs is one possible route to quantum computation. Translating this idea to three quantum dots would enable a whole host of extended functionality. Researchers now generate and manipulate coherent superpositions of quantum states using the spins across three electrical-gate-defined dots. Spin qubits involving individual spins in single quantum dots or coupled spins in double quantum dots have emerged as potential building blocks for quantum information processing applications 1 , 2 , 3 , 4 . It has been suggested that triple quantum dots may provide additional tools and functionalities. These include encoding information either to obtain protection from decoherence or to permit all-electrical operation 5 , efficient spin busing across a quantum circuit 6 , and to enable quantum error correction using the three-spin Greenberger-Horn-Zeilinger quantum state. Towards these goals we demonstrate coherent manipulation of two interacting three-spin states. We employ the Landau–Zener–Stückelberg 7 , 8 approach for creating and manipulating coherent superpositions of quantum states 9 . We confirm that we are able to maintain coherence when decreasing the exchange coupling of one spin with another while simultaneously increasing its coupling with the third. Such control of pairwise exchange is a requirement of most spin qubit architectures 10 , but has not been previously demonstrated.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2149</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Architecture ; Atomic ; Circuits ; Classical and Continuum Physics ; Coherence ; Complex Systems ; Condensed Matter Physics ; Electronics ; Encoding ; Error correction ; Joining ; letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum dots ; Quantum physics ; Qubits (quantum computing) ; Theoretical</subject><ispartof>Nature physics, 2012-01, Vol.8 (1), p.54-58</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Jan 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-78a6cf14d480951032bea9123103fba1b398fc1df3e09675a9ff8e34ad9e98513</citedby><cites>FETCH-LOGICAL-c490t-78a6cf14d480951032bea9123103fba1b398fc1df3e09675a9ff8e34ad9e98513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys2149$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys2149$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gaudreau, L.</creatorcontrib><creatorcontrib>Granger, G.</creatorcontrib><creatorcontrib>Kam, A.</creatorcontrib><creatorcontrib>Aers, G. C.</creatorcontrib><creatorcontrib>Studenikin, S. A.</creatorcontrib><creatorcontrib>Zawadzki, P.</creatorcontrib><creatorcontrib>Pioro-Ladrière, M.</creatorcontrib><creatorcontrib>Wasilewski, Z. R.</creatorcontrib><creatorcontrib>Sachrajda, A. S.</creatorcontrib><title>Coherent control of three-spin states in a triple quantum dot</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Manipulating the electrons trapped in quantum-dot pairs is one possible route to quantum computation. Translating this idea to three quantum dots would enable a whole host of extended functionality. Researchers now generate and manipulate coherent superpositions of quantum states using the spins across three electrical-gate-defined dots. Spin qubits involving individual spins in single quantum dots or coupled spins in double quantum dots have emerged as potential building blocks for quantum information processing applications 1 , 2 , 3 , 4 . It has been suggested that triple quantum dots may provide additional tools and functionalities. These include encoding information either to obtain protection from decoherence or to permit all-electrical operation 5 , efficient spin busing across a quantum circuit 6 , and to enable quantum error correction using the three-spin Greenberger-Horn-Zeilinger quantum state. Towards these goals we demonstrate coherent manipulation of two interacting three-spin states. We employ the Landau–Zener–Stückelberg 7 , 8 approach for creating and manipulating coherent superpositions of quantum states 9 . We confirm that we are able to maintain coherence when decreasing the exchange coupling of one spin with another while simultaneously increasing its coupling with the third. Such control of pairwise exchange is a requirement of most spin qubit architectures 10 , but has not been previously demonstrated.</description><subject>Architecture</subject><subject>Atomic</subject><subject>Circuits</subject><subject>Classical and Continuum Physics</subject><subject>Coherence</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Electronics</subject><subject>Encoding</subject><subject>Error correction</subject><subject>Joining</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum dots</subject><subject>Quantum physics</subject><subject>Qubits (quantum computing)</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0E9LwzAYBvAgCs7pwW8QPKlQTZq0zXvwIMN_MPCi55K1b1xHl3RJeti3N2MyQU_vc_jx8PAScsnZHWdC3dthuQ05l3BEJrySRZZLxY8PuRKn5CyEFWMyL7mYkIeZW6JHG2njbPSup87QuPSIWRg6S0PUEQNNSdPou6FHuhm1jeOati6ekxOj-4AXP3dKPp-fPmav2fz95W32OM8aCSxmldJlY7hspWJQpJ35AjXwXKRoFpovBCjT8NYIZFBWhQZjFAqpW0BQBRdTcr3vHbzbjBhive5Cg32vLbox1JzluVIg-Y5e_aErN3qb1tUAAqCUSiR0s0eNdyF4NPXgu7X229RU7_5YH_6Y7O3ehmTsF_rfwv_4G9YRc5w</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Gaudreau, L.</creator><creator>Granger, G.</creator><creator>Kam, A.</creator><creator>Aers, G. C.</creator><creator>Studenikin, S. A.</creator><creator>Zawadzki, P.</creator><creator>Pioro-Ladrière, M.</creator><creator>Wasilewski, Z. R.</creator><creator>Sachrajda, A. S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20120101</creationdate><title>Coherent control of three-spin states in a triple quantum dot</title><author>Gaudreau, L. ; Granger, G. ; Kam, A. ; Aers, G. C. ; Studenikin, S. A. ; Zawadzki, P. ; Pioro-Ladrière, M. ; Wasilewski, Z. R. ; Sachrajda, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-78a6cf14d480951032bea9123103fba1b398fc1df3e09675a9ff8e34ad9e98513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Architecture</topic><topic>Atomic</topic><topic>Circuits</topic><topic>Classical and Continuum Physics</topic><topic>Coherence</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Electronics</topic><topic>Encoding</topic><topic>Error correction</topic><topic>Joining</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum dots</topic><topic>Quantum physics</topic><topic>Qubits (quantum computing)</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaudreau, L.</creatorcontrib><creatorcontrib>Granger, G.</creatorcontrib><creatorcontrib>Kam, A.</creatorcontrib><creatorcontrib>Aers, G. C.</creatorcontrib><creatorcontrib>Studenikin, S. A.</creatorcontrib><creatorcontrib>Zawadzki, P.</creatorcontrib><creatorcontrib>Pioro-Ladrière, M.</creatorcontrib><creatorcontrib>Wasilewski, Z. R.</creatorcontrib><creatorcontrib>Sachrajda, A. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaudreau, L.</au><au>Granger, G.</au><au>Kam, A.</au><au>Aers, G. C.</au><au>Studenikin, S. A.</au><au>Zawadzki, P.</au><au>Pioro-Ladrière, M.</au><au>Wasilewski, Z. R.</au><au>Sachrajda, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent control of three-spin states in a triple quantum dot</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2012-01-01</date><risdate>2012</risdate><volume>8</volume><issue>1</issue><spage>54</spage><epage>58</epage><pages>54-58</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Manipulating the electrons trapped in quantum-dot pairs is one possible route to quantum computation. Translating this idea to three quantum dots would enable a whole host of extended functionality. Researchers now generate and manipulate coherent superpositions of quantum states using the spins across three electrical-gate-defined dots. Spin qubits involving individual spins in single quantum dots or coupled spins in double quantum dots have emerged as potential building blocks for quantum information processing applications 1 , 2 , 3 , 4 . It has been suggested that triple quantum dots may provide additional tools and functionalities. These include encoding information either to obtain protection from decoherence or to permit all-electrical operation 5 , efficient spin busing across a quantum circuit 6 , and to enable quantum error correction using the three-spin Greenberger-Horn-Zeilinger quantum state. Towards these goals we demonstrate coherent manipulation of two interacting three-spin states. We employ the Landau–Zener–Stückelberg 7 , 8 approach for creating and manipulating coherent superpositions of quantum states 9 . We confirm that we are able to maintain coherence when decreasing the exchange coupling of one spin with another while simultaneously increasing its coupling with the third. Such control of pairwise exchange is a requirement of most spin qubit architectures 10 , but has not been previously demonstrated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2149</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2012-01, Vol.8 (1), p.54-58
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1022889411
source SpringerLink Journals; Nature
subjects Architecture
Atomic
Circuits
Classical and Continuum Physics
Coherence
Complex Systems
Condensed Matter Physics
Electronics
Encoding
Error correction
Joining
letter
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum dots
Quantum physics
Qubits (quantum computing)
Theoretical
title Coherent control of three-spin states in a triple quantum dot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20control%20of%20three-spin%20states%20in%20a%20triple%20quantum%20dot&rft.jtitle=Nature%20physics&rft.au=Gaudreau,%20L.&rft.date=2012-01-01&rft.volume=8&rft.issue=1&rft.spage=54&rft.epage=58&rft.pages=54-58&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2149&rft_dat=%3Cproquest_cross%3E1022889411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=993996483&rft_id=info:pmid/&rfr_iscdi=true