Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments
In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were...
Gespeichert in:
Veröffentlicht in: | Thin solid films 2010-10, Vol.518 (24), p.7339-7342 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7342 |
---|---|
container_issue | 24 |
container_start_page | 7339 |
container_title | Thin solid films |
container_volume | 518 |
creator | Chen, Shih-Cheng Chang, Ting-Chang Chen, Wei-Ren Lo, Yuan-Chun Wu, Kai-Ting Sze, S.M. Chen, Jason Liao, I.H. Yeh(Huang), Fon-Shan |
description | In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation. |
doi_str_mv | 10.1016/j.tsf.2010.04.107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022884805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609010006401</els_id><sourcerecordid>1022884805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-6e1f6bba49effabe070dc0a20d44c82f44be165ca1794f400b799e9790832afe3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD9-gLe9CF62TrLpZoMnKX5BUQQ9h2x2UrbsJjVJxf57U1o8ehrmnWfeYV5CrihMKdD6djVN0U4Z5B54lsQRmdBGyJKJih6TCQCHsgYJp-QsxhUAUMaqCXl_9e7bDzr1AxYjjj5sC7QWTSq8LdLGLWNCVzjtvAnbmPQQi43rMBT-Z7vMk_Wg46iLFFCnEV2KF-TEZgovD_WcfD4-fMyfy8Xb08v8flEazupU1kht3baay3xOtwgCOgOaQce5aZjlvEVaz4ymQnLLAVohJUohoamYtlidk5u97zr4rw3GpMY-GhwG7dBvoqLAWNPwBmYZpXvUBB9jQKvWoR912GZI7eJTK5XjU7v4FPAsibxzfbDX0ejBBu1MH_8WWVVxEFxm7m7PYf71u8egounRGez6kFNUne__ufILRqmG0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022884805</pqid></control><display><type>article</type><title>Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Shih-Cheng ; Chang, Ting-Chang ; Chen, Wei-Ren ; Lo, Yuan-Chun ; Wu, Kai-Ting ; Sze, S.M. ; Chen, Jason ; Liao, I.H. ; Yeh(Huang), Fon-Shan</creator><creatorcontrib>Chen, Shih-Cheng ; Chang, Ting-Chang ; Chen, Wei-Ren ; Lo, Yuan-Chun ; Wu, Kai-Ting ; Sze, S.M. ; Chen, Jason ; Liao, I.H. ; Yeh(Huang), Fon-Shan</creatorcontrib><description>In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2010.04.107</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Charge ; Composition and phase identification ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Density ; Durability ; Endurance ; Exact sciences and technology ; Materials science ; Memory ; Nanocrystals ; Nanoscale materials and structures: fabrication and characterization ; Nonvolatile ; Other topics in nanoscale materials and structures ; Oxygen ; Oxygen plasma ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasma applications ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Thin films ; X-ray photoelectron spectroscopy</subject><ispartof>Thin solid films, 2010-10, Vol.518 (24), p.7339-7342</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-6e1f6bba49effabe070dc0a20d44c82f44be165ca1794f400b799e9790832afe3</citedby><cites>FETCH-LOGICAL-c426t-6e1f6bba49effabe070dc0a20d44c82f44be165ca1794f400b799e9790832afe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0040609010006401$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23340749$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Shih-Cheng</creatorcontrib><creatorcontrib>Chang, Ting-Chang</creatorcontrib><creatorcontrib>Chen, Wei-Ren</creatorcontrib><creatorcontrib>Lo, Yuan-Chun</creatorcontrib><creatorcontrib>Wu, Kai-Ting</creatorcontrib><creatorcontrib>Sze, S.M.</creatorcontrib><creatorcontrib>Chen, Jason</creatorcontrib><creatorcontrib>Liao, I.H.</creatorcontrib><creatorcontrib>Yeh(Huang), Fon-Shan</creatorcontrib><title>Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments</title><title>Thin solid films</title><description>In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.</description><subject>Charge</subject><subject>Composition and phase identification</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Density</subject><subject>Durability</subject><subject>Endurance</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Memory</subject><subject>Nanocrystals</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nonvolatile</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Oxygen</subject><subject>Oxygen plasma</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasma applications</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Thin films</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD9-gLe9CF62TrLpZoMnKX5BUQQ9h2x2UrbsJjVJxf57U1o8ehrmnWfeYV5CrihMKdD6djVN0U4Z5B54lsQRmdBGyJKJih6TCQCHsgYJp-QsxhUAUMaqCXl_9e7bDzr1AxYjjj5sC7QWTSq8LdLGLWNCVzjtvAnbmPQQi43rMBT-Z7vMk_Wg46iLFFCnEV2KF-TEZgovD_WcfD4-fMyfy8Xb08v8flEazupU1kht3baay3xOtwgCOgOaQce5aZjlvEVaz4ymQnLLAVohJUohoamYtlidk5u97zr4rw3GpMY-GhwG7dBvoqLAWNPwBmYZpXvUBB9jQKvWoR912GZI7eJTK5XjU7v4FPAsibxzfbDX0ejBBu1MH_8WWVVxEFxm7m7PYf71u8egounRGez6kFNUne__ufILRqmG0w</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Chen, Shih-Cheng</creator><creator>Chang, Ting-Chang</creator><creator>Chen, Wei-Ren</creator><creator>Lo, Yuan-Chun</creator><creator>Wu, Kai-Ting</creator><creator>Sze, S.M.</creator><creator>Chen, Jason</creator><creator>Liao, I.H.</creator><creator>Yeh(Huang), Fon-Shan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101001</creationdate><title>Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments</title><author>Chen, Shih-Cheng ; Chang, Ting-Chang ; Chen, Wei-Ren ; Lo, Yuan-Chun ; Wu, Kai-Ting ; Sze, S.M. ; Chen, Jason ; Liao, I.H. ; Yeh(Huang), Fon-Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-6e1f6bba49effabe070dc0a20d44c82f44be165ca1794f400b799e9790832afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Charge</topic><topic>Composition and phase identification</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Density</topic><topic>Durability</topic><topic>Endurance</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Memory</topic><topic>Nanocrystals</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nonvolatile</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Oxygen</topic><topic>Oxygen plasma</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasma applications</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Thin films</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shih-Cheng</creatorcontrib><creatorcontrib>Chang, Ting-Chang</creatorcontrib><creatorcontrib>Chen, Wei-Ren</creatorcontrib><creatorcontrib>Lo, Yuan-Chun</creatorcontrib><creatorcontrib>Wu, Kai-Ting</creatorcontrib><creatorcontrib>Sze, S.M.</creatorcontrib><creatorcontrib>Chen, Jason</creatorcontrib><creatorcontrib>Liao, I.H.</creatorcontrib><creatorcontrib>Yeh(Huang), Fon-Shan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shih-Cheng</au><au>Chang, Ting-Chang</au><au>Chen, Wei-Ren</au><au>Lo, Yuan-Chun</au><au>Wu, Kai-Ting</au><au>Sze, S.M.</au><au>Chen, Jason</au><au>Liao, I.H.</au><au>Yeh(Huang), Fon-Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments</atitle><jtitle>Thin solid films</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>518</volume><issue>24</issue><spage>7339</spage><epage>7342</epage><pages>7339-7342</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2010.04.107</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2010-10, Vol.518 (24), p.7339-7342 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_proquest_miscellaneous_1022884805 |
source | Elsevier ScienceDirect Journals |
subjects | Charge Composition and phase identification Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Density Durability Endurance Exact sciences and technology Materials science Memory Nanocrystals Nanoscale materials and structures: fabrication and characterization Nonvolatile Other topics in nanoscale materials and structures Oxygen Oxygen plasma Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma Plasma applications Structure and morphology thickness Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thin film structure and morphology Thin films X-ray photoelectron spectroscopy |
title | Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonvolatile%20memory%20effect%20of%20tungsten%20nanocrystals%20under%20oxygen%20plasma%20treatments&rft.jtitle=Thin%20solid%20films&rft.au=Chen,%20Shih-Cheng&rft.date=2010-10-01&rft.volume=518&rft.issue=24&rft.spage=7339&rft.epage=7342&rft.pages=7339-7342&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2010.04.107&rft_dat=%3Cproquest_cross%3E1022884805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022884805&rft_id=info:pmid/&rft_els_id=S0040609010006401&rfr_iscdi=true |