Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments

In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2010-10, Vol.518 (24), p.7339-7342
Hauptverfasser: Chen, Shih-Cheng, Chang, Ting-Chang, Chen, Wei-Ren, Lo, Yuan-Chun, Wu, Kai-Ting, Sze, S.M., Chen, Jason, Liao, I.H., Yeh(Huang), Fon-Shan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7342
container_issue 24
container_start_page 7339
container_title Thin solid films
container_volume 518
creator Chen, Shih-Cheng
Chang, Ting-Chang
Chen, Wei-Ren
Lo, Yuan-Chun
Wu, Kai-Ting
Sze, S.M.
Chen, Jason
Liao, I.H.
Yeh(Huang), Fon-Shan
description In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.
doi_str_mv 10.1016/j.tsf.2010.04.107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022884805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609010006401</els_id><sourcerecordid>1022884805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-6e1f6bba49effabe070dc0a20d44c82f44be165ca1794f400b799e9790832afe3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD9-gLe9CF62TrLpZoMnKX5BUQQ9h2x2UrbsJjVJxf57U1o8ehrmnWfeYV5CrihMKdD6djVN0U4Z5B54lsQRmdBGyJKJih6TCQCHsgYJp-QsxhUAUMaqCXl_9e7bDzr1AxYjjj5sC7QWTSq8LdLGLWNCVzjtvAnbmPQQi43rMBT-Z7vMk_Wg46iLFFCnEV2KF-TEZgovD_WcfD4-fMyfy8Xb08v8flEazupU1kht3baay3xOtwgCOgOaQce5aZjlvEVaz4ymQnLLAVohJUohoamYtlidk5u97zr4rw3GpMY-GhwG7dBvoqLAWNPwBmYZpXvUBB9jQKvWoR912GZI7eJTK5XjU7v4FPAsibxzfbDX0ejBBu1MH_8WWVVxEFxm7m7PYf71u8egounRGez6kFNUne__ufILRqmG0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022884805</pqid></control><display><type>article</type><title>Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Shih-Cheng ; Chang, Ting-Chang ; Chen, Wei-Ren ; Lo, Yuan-Chun ; Wu, Kai-Ting ; Sze, S.M. ; Chen, Jason ; Liao, I.H. ; Yeh(Huang), Fon-Shan</creator><creatorcontrib>Chen, Shih-Cheng ; Chang, Ting-Chang ; Chen, Wei-Ren ; Lo, Yuan-Chun ; Wu, Kai-Ting ; Sze, S.M. ; Chen, Jason ; Liao, I.H. ; Yeh(Huang), Fon-Shan</creatorcontrib><description>In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2010.04.107</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Charge ; Composition and phase identification ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Density ; Durability ; Endurance ; Exact sciences and technology ; Materials science ; Memory ; Nanocrystals ; Nanoscale materials and structures: fabrication and characterization ; Nonvolatile ; Other topics in nanoscale materials and structures ; Oxygen ; Oxygen plasma ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasma applications ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Thin films ; X-ray photoelectron spectroscopy</subject><ispartof>Thin solid films, 2010-10, Vol.518 (24), p.7339-7342</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-6e1f6bba49effabe070dc0a20d44c82f44be165ca1794f400b799e9790832afe3</citedby><cites>FETCH-LOGICAL-c426t-6e1f6bba49effabe070dc0a20d44c82f44be165ca1794f400b799e9790832afe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0040609010006401$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23340749$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Shih-Cheng</creatorcontrib><creatorcontrib>Chang, Ting-Chang</creatorcontrib><creatorcontrib>Chen, Wei-Ren</creatorcontrib><creatorcontrib>Lo, Yuan-Chun</creatorcontrib><creatorcontrib>Wu, Kai-Ting</creatorcontrib><creatorcontrib>Sze, S.M.</creatorcontrib><creatorcontrib>Chen, Jason</creatorcontrib><creatorcontrib>Liao, I.H.</creatorcontrib><creatorcontrib>Yeh(Huang), Fon-Shan</creatorcontrib><title>Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments</title><title>Thin solid films</title><description>In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.</description><subject>Charge</subject><subject>Composition and phase identification</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Density</subject><subject>Durability</subject><subject>Endurance</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Memory</subject><subject>Nanocrystals</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nonvolatile</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Oxygen</subject><subject>Oxygen plasma</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasma applications</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Thin films</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD9-gLe9CF62TrLpZoMnKX5BUQQ9h2x2UrbsJjVJxf57U1o8ehrmnWfeYV5CrihMKdD6djVN0U4Z5B54lsQRmdBGyJKJih6TCQCHsgYJp-QsxhUAUMaqCXl_9e7bDzr1AxYjjj5sC7QWTSq8LdLGLWNCVzjtvAnbmPQQi43rMBT-Z7vMk_Wg46iLFFCnEV2KF-TEZgovD_WcfD4-fMyfy8Xb08v8flEazupU1kht3baay3xOtwgCOgOaQce5aZjlvEVaz4ymQnLLAVohJUohoamYtlidk5u97zr4rw3GpMY-GhwG7dBvoqLAWNPwBmYZpXvUBB9jQKvWoR912GZI7eJTK5XjU7v4FPAsibxzfbDX0ejBBu1MH_8WWVVxEFxm7m7PYf71u8egounRGez6kFNUne__ufILRqmG0w</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Chen, Shih-Cheng</creator><creator>Chang, Ting-Chang</creator><creator>Chen, Wei-Ren</creator><creator>Lo, Yuan-Chun</creator><creator>Wu, Kai-Ting</creator><creator>Sze, S.M.</creator><creator>Chen, Jason</creator><creator>Liao, I.H.</creator><creator>Yeh(Huang), Fon-Shan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101001</creationdate><title>Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments</title><author>Chen, Shih-Cheng ; Chang, Ting-Chang ; Chen, Wei-Ren ; Lo, Yuan-Chun ; Wu, Kai-Ting ; Sze, S.M. ; Chen, Jason ; Liao, I.H. ; Yeh(Huang), Fon-Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-6e1f6bba49effabe070dc0a20d44c82f44be165ca1794f400b799e9790832afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Charge</topic><topic>Composition and phase identification</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Density</topic><topic>Durability</topic><topic>Endurance</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Memory</topic><topic>Nanocrystals</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nonvolatile</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Oxygen</topic><topic>Oxygen plasma</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasma applications</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Thin films</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shih-Cheng</creatorcontrib><creatorcontrib>Chang, Ting-Chang</creatorcontrib><creatorcontrib>Chen, Wei-Ren</creatorcontrib><creatorcontrib>Lo, Yuan-Chun</creatorcontrib><creatorcontrib>Wu, Kai-Ting</creatorcontrib><creatorcontrib>Sze, S.M.</creatorcontrib><creatorcontrib>Chen, Jason</creatorcontrib><creatorcontrib>Liao, I.H.</creatorcontrib><creatorcontrib>Yeh(Huang), Fon-Shan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shih-Cheng</au><au>Chang, Ting-Chang</au><au>Chen, Wei-Ren</au><au>Lo, Yuan-Chun</au><au>Wu, Kai-Ting</au><au>Sze, S.M.</au><au>Chen, Jason</au><au>Liao, I.H.</au><au>Yeh(Huang), Fon-Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments</atitle><jtitle>Thin solid films</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>518</volume><issue>24</issue><spage>7339</spage><epage>7342</epage><pages>7339-7342</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2010.04.107</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2010-10, Vol.518 (24), p.7339-7342
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1022884805
source Elsevier ScienceDirect Journals
subjects Charge
Composition and phase identification
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Density
Durability
Endurance
Exact sciences and technology
Materials science
Memory
Nanocrystals
Nanoscale materials and structures: fabrication and characterization
Nonvolatile
Other topics in nanoscale materials and structures
Oxygen
Oxygen plasma
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma
Plasma applications
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
Thin films
X-ray photoelectron spectroscopy
title Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonvolatile%20memory%20effect%20of%20tungsten%20nanocrystals%20under%20oxygen%20plasma%20treatments&rft.jtitle=Thin%20solid%20films&rft.au=Chen,%20Shih-Cheng&rft.date=2010-10-01&rft.volume=518&rft.issue=24&rft.spage=7339&rft.epage=7342&rft.pages=7339-7342&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2010.04.107&rft_dat=%3Cproquest_cross%3E1022884805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022884805&rft_id=info:pmid/&rft_els_id=S0040609010006401&rfr_iscdi=true