Intensity image denoising for laser active imaging system using nonsubsampled contourlet transform and SURE approach

This paper presents an algorithm based on nonsubsampled contourlet transform (NSCT) and Stein's unbiased risk estimate with a linear expansion of thresholds (SURE-LET) approach for intensity image denoising. First, we analyzed the multiplicative noise model of intensity image and make the non-l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optik (Stuttgart) 2012-05, Vol.123 (9), p.808-813
Hauptverfasser: Li, Xiao feng, Xu, Jun, Luo, Jijun, Cao, Lijia, Zhang, Shengxiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 813
container_issue 9
container_start_page 808
container_title Optik (Stuttgart)
container_volume 123
creator Li, Xiao feng
Xu, Jun
Luo, Jijun
Cao, Lijia
Zhang, Shengxiu
description This paper presents an algorithm based on nonsubsampled contourlet transform (NSCT) and Stein's unbiased risk estimate with a linear expansion of thresholds (SURE-LET) approach for intensity image denoising. First, we analyzed the multiplicative noise model of intensity image and make the non-logarithmic transform on the noisy signal. Then, as a multiscale geometric representation tool with multi-directivity and shift-invariance, NSCT was performed to capture the geometric information of images. Finally, SURE-LET strategy was modified to minimize the estimation of the mean square error between the clean image and the denoised one in the NSCT domain. Experiments on real intensity images show that the algorithm has excellent denoising performance in terms of the peak signal-to-noise ratio (PSNR), the computation time and the visual quality.
doi_str_mv 10.1016/j.ijleo.2011.06.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022884027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003040261100324X</els_id><sourcerecordid>1022884027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-35a72b3f6d0fa49d8063ba42ef514d0c36d1dec7930bfd5e90f9adc736f83d73</originalsourceid><addsrcrecordid>eNp9kD1v2zAQhokiBeqk_QVdOHaRehRlSh46FEGaBAgQIElngiaPKQ2JdHlUAP_70nbnTDfc897Hw9hXAa0Aob7v2rCbMLUdCNGCaqHvPrCVUGJshJTqgq0AJDQ9dOoTuyTaAcAwwLBi5T4WjBTKgYfZvCJ3GFOgEF-5T5lPhjBzY0t4wxNwbNCBCs58OVExRVq2ZOb9hI7bFEta8oSFl2wi1RkzN9Hx599PN9zs9zkZ--cz--jNRPjlf71iL79uXq7vmofH2_vrnw-NrUeXRq7N0G2lVw686TduBCW3pu_Qr0XvwErlhEM7bCRsvVvjBvzGODtI5UfpBnnFvp3H1q1_F6Si50AWp8lETAtpAV03jlXKEZVn1OZElNHrfa7v5kOF9FGx3umTYn1UrEHpqrimfpxTWJ94C5g12YDRogsZbdEuhXfz_wAQyIj8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022884027</pqid></control><display><type>article</type><title>Intensity image denoising for laser active imaging system using nonsubsampled contourlet transform and SURE approach</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Li, Xiao feng ; Xu, Jun ; Luo, Jijun ; Cao, Lijia ; Zhang, Shengxiu</creator><creatorcontrib>Li, Xiao feng ; Xu, Jun ; Luo, Jijun ; Cao, Lijia ; Zhang, Shengxiu</creatorcontrib><description>This paper presents an algorithm based on nonsubsampled contourlet transform (NSCT) and Stein's unbiased risk estimate with a linear expansion of thresholds (SURE-LET) approach for intensity image denoising. First, we analyzed the multiplicative noise model of intensity image and make the non-logarithmic transform on the noisy signal. Then, as a multiscale geometric representation tool with multi-directivity and shift-invariance, NSCT was performed to capture the geometric information of images. Finally, SURE-LET strategy was modified to minimize the estimation of the mean square error between the clean image and the denoised one in the NSCT domain. Experiments on real intensity images show that the algorithm has excellent denoising performance in terms of the peak signal-to-noise ratio (PSNR), the computation time and the visual quality.</description><identifier>ISSN: 0030-4026</identifier><identifier>EISSN: 1618-1336</identifier><identifier>DOI: 10.1016/j.ijleo.2011.06.042</identifier><language>eng</language><publisher>Elsevier GmbH</publisher><subject>Algorithms ; Estimates ; Image denoising ; Imaging ; Intensity image ; Laser Active imaging system ; Nonsubsampled contourlet transform ; Risk ; Shape ; Stein's unbiased risk estimate (SURE) minimization ; Transforms</subject><ispartof>Optik (Stuttgart), 2012-05, Vol.123 (9), p.808-813</ispartof><rights>2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-35a72b3f6d0fa49d8063ba42ef514d0c36d1dec7930bfd5e90f9adc736f83d73</citedby><cites>FETCH-LOGICAL-c336t-35a72b3f6d0fa49d8063ba42ef514d0c36d1dec7930bfd5e90f9adc736f83d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijleo.2011.06.042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Li, Xiao feng</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Luo, Jijun</creatorcontrib><creatorcontrib>Cao, Lijia</creatorcontrib><creatorcontrib>Zhang, Shengxiu</creatorcontrib><title>Intensity image denoising for laser active imaging system using nonsubsampled contourlet transform and SURE approach</title><title>Optik (Stuttgart)</title><description>This paper presents an algorithm based on nonsubsampled contourlet transform (NSCT) and Stein's unbiased risk estimate with a linear expansion of thresholds (SURE-LET) approach for intensity image denoising. First, we analyzed the multiplicative noise model of intensity image and make the non-logarithmic transform on the noisy signal. Then, as a multiscale geometric representation tool with multi-directivity and shift-invariance, NSCT was performed to capture the geometric information of images. Finally, SURE-LET strategy was modified to minimize the estimation of the mean square error between the clean image and the denoised one in the NSCT domain. Experiments on real intensity images show that the algorithm has excellent denoising performance in terms of the peak signal-to-noise ratio (PSNR), the computation time and the visual quality.</description><subject>Algorithms</subject><subject>Estimates</subject><subject>Image denoising</subject><subject>Imaging</subject><subject>Intensity image</subject><subject>Laser Active imaging system</subject><subject>Nonsubsampled contourlet transform</subject><subject>Risk</subject><subject>Shape</subject><subject>Stein's unbiased risk estimate (SURE) minimization</subject><subject>Transforms</subject><issn>0030-4026</issn><issn>1618-1336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1v2zAQhokiBeqk_QVdOHaRehRlSh46FEGaBAgQIElngiaPKQ2JdHlUAP_70nbnTDfc897Hw9hXAa0Aob7v2rCbMLUdCNGCaqHvPrCVUGJshJTqgq0AJDQ9dOoTuyTaAcAwwLBi5T4WjBTKgYfZvCJ3GFOgEF-5T5lPhjBzY0t4wxNwbNCBCs58OVExRVq2ZOb9hI7bFEta8oSFl2wi1RkzN9Hx599PN9zs9zkZ--cz--jNRPjlf71iL79uXq7vmofH2_vrnw-NrUeXRq7N0G2lVw686TduBCW3pu_Qr0XvwErlhEM7bCRsvVvjBvzGODtI5UfpBnnFvp3H1q1_F6Si50AWp8lETAtpAV03jlXKEZVn1OZElNHrfa7v5kOF9FGx3umTYn1UrEHpqrimfpxTWJ94C5g12YDRogsZbdEuhXfz_wAQyIj8</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Li, Xiao feng</creator><creator>Xu, Jun</creator><creator>Luo, Jijun</creator><creator>Cao, Lijia</creator><creator>Zhang, Shengxiu</creator><general>Elsevier GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201205</creationdate><title>Intensity image denoising for laser active imaging system using nonsubsampled contourlet transform and SURE approach</title><author>Li, Xiao feng ; Xu, Jun ; Luo, Jijun ; Cao, Lijia ; Zhang, Shengxiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-35a72b3f6d0fa49d8063ba42ef514d0c36d1dec7930bfd5e90f9adc736f83d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Estimates</topic><topic>Image denoising</topic><topic>Imaging</topic><topic>Intensity image</topic><topic>Laser Active imaging system</topic><topic>Nonsubsampled contourlet transform</topic><topic>Risk</topic><topic>Shape</topic><topic>Stein's unbiased risk estimate (SURE) minimization</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiao feng</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Luo, Jijun</creatorcontrib><creatorcontrib>Cao, Lijia</creatorcontrib><creatorcontrib>Zhang, Shengxiu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optik (Stuttgart)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiao feng</au><au>Xu, Jun</au><au>Luo, Jijun</au><au>Cao, Lijia</au><au>Zhang, Shengxiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intensity image denoising for laser active imaging system using nonsubsampled contourlet transform and SURE approach</atitle><jtitle>Optik (Stuttgart)</jtitle><date>2012-05</date><risdate>2012</risdate><volume>123</volume><issue>9</issue><spage>808</spage><epage>813</epage><pages>808-813</pages><issn>0030-4026</issn><eissn>1618-1336</eissn><abstract>This paper presents an algorithm based on nonsubsampled contourlet transform (NSCT) and Stein's unbiased risk estimate with a linear expansion of thresholds (SURE-LET) approach for intensity image denoising. First, we analyzed the multiplicative noise model of intensity image and make the non-logarithmic transform on the noisy signal. Then, as a multiscale geometric representation tool with multi-directivity and shift-invariance, NSCT was performed to capture the geometric information of images. Finally, SURE-LET strategy was modified to minimize the estimation of the mean square error between the clean image and the denoised one in the NSCT domain. Experiments on real intensity images show that the algorithm has excellent denoising performance in terms of the peak signal-to-noise ratio (PSNR), the computation time and the visual quality.</abstract><pub>Elsevier GmbH</pub><doi>10.1016/j.ijleo.2011.06.042</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-4026
ispartof Optik (Stuttgart), 2012-05, Vol.123 (9), p.808-813
issn 0030-4026
1618-1336
language eng
recordid cdi_proquest_miscellaneous_1022884027
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Estimates
Image denoising
Imaging
Intensity image
Laser Active imaging system
Nonsubsampled contourlet transform
Risk
Shape
Stein's unbiased risk estimate (SURE) minimization
Transforms
title Intensity image denoising for laser active imaging system using nonsubsampled contourlet transform and SURE approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intensity%20image%20denoising%20for%20laser%20active%20imaging%20system%20using%20nonsubsampled%20contourlet%20transform%20and%20SURE%20approach&rft.jtitle=Optik%20(Stuttgart)&rft.au=Li,%20Xiao%20feng&rft.date=2012-05&rft.volume=123&rft.issue=9&rft.spage=808&rft.epage=813&rft.pages=808-813&rft.issn=0030-4026&rft.eissn=1618-1336&rft_id=info:doi/10.1016/j.ijleo.2011.06.042&rft_dat=%3Cproquest_cross%3E1022884027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022884027&rft_id=info:pmid/&rft_els_id=S003040261100324X&rfr_iscdi=true