Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale

The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2011-03, Vol.519 (11), p.3690-3694
Hauptverfasser: Awada, Houssein, Noel, Olivier, Hamieh, Tayssir, Kazzi, Yolla, Brogly, Maurice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3694
container_issue 11
container_start_page 3690
container_title Thin solid films
container_volume 519
creator Awada, Houssein
Noel, Olivier
Hamieh, Tayssir
Kazzi, Yolla
Brogly, Maurice
description The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature.
doi_str_mv 10.1016/j.tsf.2011.01.261
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022883328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609011003245</els_id><sourcerecordid>1022883328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-12481ca4123470e49da32d5c3e2ece539552cc5cfa9aa5b03150a2caf97a6d623</originalsourceid><addsrcrecordid>eNp9kMGKFDEQhsOisOPqA-wtF8FLt5Wku6cbTzK4Kix40XOora4wGaaT2SQt-PZmZhaPnsIPX_2V-oS4V9AqUMPHQ1uyazUo1YJq9aBuxEaN26nRW6NeiQ1AB80AE9yKNzkfAEBpbTYi72IoyT-txceQZXSS9rx4wqPEMMuFaY_hEvOaHBLLU4onTsVzvhCFlxqxrIklO8dUZAyy7FnivOdcWyWWSw4YYq5N_Fa8dnjM_O7lvRO_Hr783H1rHn98_b77_NiQGaA0SnejIuyUNt0WuJtmNHruybBm4t5Mfa-JenI4IfZPYFQPqAndtMVhHrS5Ex-uvfXLzyvnYhefiY9HDBzXbBVoPY7G6LGi6opSijkndvaU_ILpT4XsWbA92CrYngVbULYKrjPvX-rxfJZLGMjnf4O6A1Mln7lPV47rrb89J5vJcyCefaq67Bz9f7b8BRzzkg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022883328</pqid></control><display><type>article</type><title>Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale</title><source>Elsevier ScienceDirect Journals</source><creator>Awada, Houssein ; Noel, Olivier ; Hamieh, Tayssir ; Kazzi, Yolla ; Brogly, Maurice</creator><creatorcontrib>Awada, Houssein ; Noel, Olivier ; Hamieh, Tayssir ; Kazzi, Yolla ; Brogly, Maurice</creatorcontrib><description>The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2011.01.261</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adhesion ; Atomic force microscopy ; Condensed matter: structure, mechanical and thermal properties ; Contact ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Mechanical and acoustical properties ; Nanocomposites ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Other topics in nanoscale materials and structures ; Physical properties of thin films, nonelectronic ; Physics ; Self assembled monolayers ; Silicon substrates ; Solid-fluid interfaces ; Structure and morphology; thickness ; Surface energy ; Surface properties ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Wettability ; Wetting</subject><ispartof>Thin solid films, 2011-03, Vol.519 (11), p.3690-3694</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-12481ca4123470e49da32d5c3e2ece539552cc5cfa9aa5b03150a2caf97a6d623</citedby><cites>FETCH-LOGICAL-c360t-12481ca4123470e49da32d5c3e2ece539552cc5cfa9aa5b03150a2caf97a6d623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0040609011003245$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24030121$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Awada, Houssein</creatorcontrib><creatorcontrib>Noel, Olivier</creatorcontrib><creatorcontrib>Hamieh, Tayssir</creatorcontrib><creatorcontrib>Kazzi, Yolla</creatorcontrib><creatorcontrib>Brogly, Maurice</creatorcontrib><title>Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale</title><title>Thin solid films</title><description>The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature.</description><subject>Adhesion</subject><subject>Atomic force microscopy</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Contact</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Mechanical and acoustical properties</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Self assembled monolayers</subject><subject>Silicon substrates</subject><subject>Solid-fluid interfaces</subject><subject>Structure and morphology; thickness</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Wettability</subject><subject>Wetting</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMGKFDEQhsOisOPqA-wtF8FLt5Wku6cbTzK4Kix40XOora4wGaaT2SQt-PZmZhaPnsIPX_2V-oS4V9AqUMPHQ1uyazUo1YJq9aBuxEaN26nRW6NeiQ1AB80AE9yKNzkfAEBpbTYi72IoyT-txceQZXSS9rx4wqPEMMuFaY_hEvOaHBLLU4onTsVzvhCFlxqxrIklO8dUZAyy7FnivOdcWyWWSw4YYq5N_Fa8dnjM_O7lvRO_Hr783H1rHn98_b77_NiQGaA0SnejIuyUNt0WuJtmNHruybBm4t5Mfa-JenI4IfZPYFQPqAndtMVhHrS5Ex-uvfXLzyvnYhefiY9HDBzXbBVoPY7G6LGi6opSijkndvaU_ILpT4XsWbA92CrYngVbULYKrjPvX-rxfJZLGMjnf4O6A1Mln7lPV47rrb89J5vJcyCefaq67Bz9f7b8BRzzkg4</recordid><startdate>20110331</startdate><enddate>20110331</enddate><creator>Awada, Houssein</creator><creator>Noel, Olivier</creator><creator>Hamieh, Tayssir</creator><creator>Kazzi, Yolla</creator><creator>Brogly, Maurice</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110331</creationdate><title>Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale</title><author>Awada, Houssein ; Noel, Olivier ; Hamieh, Tayssir ; Kazzi, Yolla ; Brogly, Maurice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-12481ca4123470e49da32d5c3e2ece539552cc5cfa9aa5b03150a2caf97a6d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adhesion</topic><topic>Atomic force microscopy</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Contact</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Mechanical and acoustical properties</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Self assembled monolayers</topic><topic>Silicon substrates</topic><topic>Solid-fluid interfaces</topic><topic>Structure and morphology; thickness</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Wettability</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awada, Houssein</creatorcontrib><creatorcontrib>Noel, Olivier</creatorcontrib><creatorcontrib>Hamieh, Tayssir</creatorcontrib><creatorcontrib>Kazzi, Yolla</creatorcontrib><creatorcontrib>Brogly, Maurice</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awada, Houssein</au><au>Noel, Olivier</au><au>Hamieh, Tayssir</au><au>Kazzi, Yolla</au><au>Brogly, Maurice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale</atitle><jtitle>Thin solid films</jtitle><date>2011-03-31</date><risdate>2011</risdate><volume>519</volume><issue>11</issue><spage>3690</spage><epage>3694</epage><pages>3690-3694</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2011.01.261</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2011-03, Vol.519 (11), p.3690-3694
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1022883328
source Elsevier ScienceDirect Journals
subjects Adhesion
Atomic force microscopy
Condensed matter: structure, mechanical and thermal properties
Contact
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Mechanical and acoustical properties
Nanocomposites
Nanomaterials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Other topics in nanoscale materials and structures
Physical properties of thin films, nonelectronic
Physics
Self assembled monolayers
Silicon substrates
Solid-fluid interfaces
Structure and morphology
thickness
Surface energy
Surface properties
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
Wettability
Wetting
title Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contributions%20of%20chemical%20and%20mechanical%20surface%20properties%20and%20temperature%20effect%20on%20the%20adhesion%20at%20the%20nanoscale&rft.jtitle=Thin%20solid%20films&rft.au=Awada,%20Houssein&rft.date=2011-03-31&rft.volume=519&rft.issue=11&rft.spage=3690&rft.epage=3694&rft.pages=3690-3694&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2011.01.261&rft_dat=%3Cproquest_cross%3E1022883328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022883328&rft_id=info:pmid/&rft_els_id=S0040609011003245&rfr_iscdi=true