Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale
The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration proc...
Gespeichert in:
Veröffentlicht in: | Thin solid films 2011-03, Vol.519 (11), p.3690-3694 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3694 |
---|---|
container_issue | 11 |
container_start_page | 3690 |
container_title | Thin solid films |
container_volume | 519 |
creator | Awada, Houssein Noel, Olivier Hamieh, Tayssir Kazzi, Yolla Brogly, Maurice |
description | The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature. |
doi_str_mv | 10.1016/j.tsf.2011.01.261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022883328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609011003245</els_id><sourcerecordid>1022883328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-12481ca4123470e49da32d5c3e2ece539552cc5cfa9aa5b03150a2caf97a6d623</originalsourceid><addsrcrecordid>eNp9kMGKFDEQhsOisOPqA-wtF8FLt5Wku6cbTzK4Kix40XOora4wGaaT2SQt-PZmZhaPnsIPX_2V-oS4V9AqUMPHQ1uyazUo1YJq9aBuxEaN26nRW6NeiQ1AB80AE9yKNzkfAEBpbTYi72IoyT-txceQZXSS9rx4wqPEMMuFaY_hEvOaHBLLU4onTsVzvhCFlxqxrIklO8dUZAyy7FnivOdcWyWWSw4YYq5N_Fa8dnjM_O7lvRO_Hr783H1rHn98_b77_NiQGaA0SnejIuyUNt0WuJtmNHruybBm4t5Mfa-JenI4IfZPYFQPqAndtMVhHrS5Ex-uvfXLzyvnYhefiY9HDBzXbBVoPY7G6LGi6opSijkndvaU_ILpT4XsWbA92CrYngVbULYKrjPvX-rxfJZLGMjnf4O6A1Mln7lPV47rrb89J5vJcyCefaq67Bz9f7b8BRzzkg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022883328</pqid></control><display><type>article</type><title>Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale</title><source>Elsevier ScienceDirect Journals</source><creator>Awada, Houssein ; Noel, Olivier ; Hamieh, Tayssir ; Kazzi, Yolla ; Brogly, Maurice</creator><creatorcontrib>Awada, Houssein ; Noel, Olivier ; Hamieh, Tayssir ; Kazzi, Yolla ; Brogly, Maurice</creatorcontrib><description>The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2011.01.261</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adhesion ; Atomic force microscopy ; Condensed matter: structure, mechanical and thermal properties ; Contact ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Mechanical and acoustical properties ; Nanocomposites ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Other topics in nanoscale materials and structures ; Physical properties of thin films, nonelectronic ; Physics ; Self assembled monolayers ; Silicon substrates ; Solid-fluid interfaces ; Structure and morphology; thickness ; Surface energy ; Surface properties ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Wettability ; Wetting</subject><ispartof>Thin solid films, 2011-03, Vol.519 (11), p.3690-3694</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-12481ca4123470e49da32d5c3e2ece539552cc5cfa9aa5b03150a2caf97a6d623</citedby><cites>FETCH-LOGICAL-c360t-12481ca4123470e49da32d5c3e2ece539552cc5cfa9aa5b03150a2caf97a6d623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0040609011003245$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24030121$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Awada, Houssein</creatorcontrib><creatorcontrib>Noel, Olivier</creatorcontrib><creatorcontrib>Hamieh, Tayssir</creatorcontrib><creatorcontrib>Kazzi, Yolla</creatorcontrib><creatorcontrib>Brogly, Maurice</creatorcontrib><title>Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale</title><title>Thin solid films</title><description>The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature.</description><subject>Adhesion</subject><subject>Atomic force microscopy</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Contact</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Mechanical and acoustical properties</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Self assembled monolayers</subject><subject>Silicon substrates</subject><subject>Solid-fluid interfaces</subject><subject>Structure and morphology; thickness</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Wettability</subject><subject>Wetting</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMGKFDEQhsOisOPqA-wtF8FLt5Wku6cbTzK4Kix40XOora4wGaaT2SQt-PZmZhaPnsIPX_2V-oS4V9AqUMPHQ1uyazUo1YJq9aBuxEaN26nRW6NeiQ1AB80AE9yKNzkfAEBpbTYi72IoyT-txceQZXSS9rx4wqPEMMuFaY_hEvOaHBLLU4onTsVzvhCFlxqxrIklO8dUZAyy7FnivOdcWyWWSw4YYq5N_Fa8dnjM_O7lvRO_Hr783H1rHn98_b77_NiQGaA0SnejIuyUNt0WuJtmNHruybBm4t5Mfa-JenI4IfZPYFQPqAndtMVhHrS5Ex-uvfXLzyvnYhefiY9HDBzXbBVoPY7G6LGi6opSijkndvaU_ILpT4XsWbA92CrYngVbULYKrjPvX-rxfJZLGMjnf4O6A1Mln7lPV47rrb89J5vJcyCefaq67Bz9f7b8BRzzkg4</recordid><startdate>20110331</startdate><enddate>20110331</enddate><creator>Awada, Houssein</creator><creator>Noel, Olivier</creator><creator>Hamieh, Tayssir</creator><creator>Kazzi, Yolla</creator><creator>Brogly, Maurice</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110331</creationdate><title>Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale</title><author>Awada, Houssein ; Noel, Olivier ; Hamieh, Tayssir ; Kazzi, Yolla ; Brogly, Maurice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-12481ca4123470e49da32d5c3e2ece539552cc5cfa9aa5b03150a2caf97a6d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adhesion</topic><topic>Atomic force microscopy</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Contact</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Mechanical and acoustical properties</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Self assembled monolayers</topic><topic>Silicon substrates</topic><topic>Solid-fluid interfaces</topic><topic>Structure and morphology; thickness</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Wettability</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awada, Houssein</creatorcontrib><creatorcontrib>Noel, Olivier</creatorcontrib><creatorcontrib>Hamieh, Tayssir</creatorcontrib><creatorcontrib>Kazzi, Yolla</creatorcontrib><creatorcontrib>Brogly, Maurice</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awada, Houssein</au><au>Noel, Olivier</au><au>Hamieh, Tayssir</au><au>Kazzi, Yolla</au><au>Brogly, Maurice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale</atitle><jtitle>Thin solid films</jtitle><date>2011-03-31</date><risdate>2011</risdate><volume>519</volume><issue>11</issue><spage>3690</spage><epage>3694</epage><pages>3690-3694</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2011.01.261</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2011-03, Vol.519 (11), p.3690-3694 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_proquest_miscellaneous_1022883328 |
source | Elsevier ScienceDirect Journals |
subjects | Adhesion Atomic force microscopy Condensed matter: structure, mechanical and thermal properties Contact Cross-disciplinary physics: materials science rheology Exact sciences and technology Materials science Mechanical and acoustical properties Nanocomposites Nanomaterials Nanoscale materials and structures: fabrication and characterization Nanostructure Other topics in nanoscale materials and structures Physical properties of thin films, nonelectronic Physics Self assembled monolayers Silicon substrates Solid-fluid interfaces Structure and morphology thickness Surface energy Surface properties Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thin film structure and morphology Wettability Wetting |
title | Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contributions%20of%20chemical%20and%20mechanical%20surface%20properties%20and%20temperature%20effect%20on%20the%20adhesion%20at%20the%20nanoscale&rft.jtitle=Thin%20solid%20films&rft.au=Awada,%20Houssein&rft.date=2011-03-31&rft.volume=519&rft.issue=11&rft.spage=3690&rft.epage=3694&rft.pages=3690-3694&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2011.01.261&rft_dat=%3Cproquest_cross%3E1022883328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022883328&rft_id=info:pmid/&rft_els_id=S0040609011003245&rfr_iscdi=true |