Electrospun poly(D,L)-lactide nonwoven mats for biomedical application: Surface area shrinkage and surface entrapment

Nanofibrous poly(D,L)‐lactide mats prepared by electrospinning are useful for numerous biomedical applications. However, it was observed that these mats tend to shrink under physiological conditions. In this research, a physical entrapment method to modify the polymer surface with poly(ethylene glyc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2011-10, Vol.122 (2), p.1219-1225
Hauptverfasser: Xie, Zhiwei, Buschle-Diller, Gisela, DeInnocentes, Patricia, Bird, R. Curtis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1225
container_issue 2
container_start_page 1219
container_title Journal of applied polymer science
container_volume 122
creator Xie, Zhiwei
Buschle-Diller, Gisela
DeInnocentes, Patricia
Bird, R. Curtis
description Nanofibrous poly(D,L)‐lactide mats prepared by electrospinning are useful for numerous biomedical applications. However, it was observed that these mats tend to shrink under physiological conditions. In this research, a physical entrapment method to modify the polymer surface with poly(ethylene glycol) was developed to ensure dimensional stability and to increase the hydrophilicity of the surface of the mats. Nanofiber morphology was characterized by scanning electron microscopy. Surface element analysis was performed by high resolution X‐ray photoelectron spectroscopy. Water contact angles were determined to identify surface properties before and after surface entrapment. Canine fibroblasts were prepared and seeded onto the poly(D,L)‐lactide mats, followed by cell morphology study by SEM and cell viability tests by MTT assay, which confirmed the improvement of biocompatibility by surface modification. Taking the results into account, hydrophilic and area‐stable nanofibrous nonwoven mats were successfully produced, with potential applications as in vivo biomedical material. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
doi_str_mv 10.1002/app.34239
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022873147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3277572541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3989-3a1f58267161c7f74a65cc7996f81b2ac0fb586413b0abd9a6ff026863c7146a3</originalsourceid><addsrcrecordid>eNp1kV9rFDEUxQdRcK0--A0CIrTgtPkzSSa-lVpXYa3FVgq-hDvZRNPOJNNkxrrf3thd-yD4dO_l_s5JOLeqXhJ8SDCmRzCOh6yhTD2qFgQrWTeCto-rRdmRulWKP62e5XyNMSEci0U1n_bWTCnmcQ5ojP1m_92b1UHdg5n82qIQw138aQMaYMrIxYQ6Hwe79gZ6VN7qSzP5GN6iizk5MBZBsoDyj-TDDXwvY1ijvFvZMCUYh1KeV08c9Nm-2NW96uv708uTD_Xq8_LjyfGqNky1qmZAHG-pkEQQI51sQHBjpFLCtaSjYLDreCsawjoM3VqBcA5T0QpmJGkEsL1qf-s7png72zzpwWdj-x6CjXPWBFPaSkYaWdBX_6DXcU6h_E4TTkTbcE55oQ62lCmR5WSdHpMfIG2Klf5zAF1C0fcHKOzrnSPkEpdLEIzPDwLaMKXUPXe05e58bzf_N9TH5-d_neutwufJ_npQQLrRQjLJ9dXZUl8tP327WH0505fsN2TBo9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516845525</pqid></control><display><type>article</type><title>Electrospun poly(D,L)-lactide nonwoven mats for biomedical application: Surface area shrinkage and surface entrapment</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xie, Zhiwei ; Buschle-Diller, Gisela ; DeInnocentes, Patricia ; Bird, R. Curtis</creator><creatorcontrib>Xie, Zhiwei ; Buschle-Diller, Gisela ; DeInnocentes, Patricia ; Bird, R. Curtis</creatorcontrib><description>Nanofibrous poly(D,L)‐lactide mats prepared by electrospinning are useful for numerous biomedical applications. However, it was observed that these mats tend to shrink under physiological conditions. In this research, a physical entrapment method to modify the polymer surface with poly(ethylene glycol) was developed to ensure dimensional stability and to increase the hydrophilicity of the surface of the mats. Nanofiber morphology was characterized by scanning electron microscopy. Surface element analysis was performed by high resolution X‐ray photoelectron spectroscopy. Water contact angles were determined to identify surface properties before and after surface entrapment. Canine fibroblasts were prepared and seeded onto the poly(D,L)‐lactide mats, followed by cell morphology study by SEM and cell viability tests by MTT assay, which confirmed the improvement of biocompatibility by surface modification. Taking the results into account, hydrophilic and area‐stable nanofibrous nonwoven mats were successfully produced, with potential applications as in vivo biomedical material. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.34239</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Biological and medical sciences ; Electrospinning ; Entrapment ; Exact sciences and technology ; Fibers and threads ; Forms of application and semi-finished materials ; L)-lactide ; Materials science ; Mats ; Medical sciences ; Morphology ; Nanocomposites ; Nanomaterials ; Nanostructure ; poly(D ; poly(D,L)‐lactide ; Polymer industry, paints, wood ; Polymers ; surface modification ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology of polymers ; Technology. Biomaterials. Equipments ; tissue engineering</subject><ispartof>Journal of applied polymer science, 2011-10, Vol.122 (2), p.1219-1225</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3989-3a1f58267161c7f74a65cc7996f81b2ac0fb586413b0abd9a6ff026863c7146a3</citedby><cites>FETCH-LOGICAL-c3989-3a1f58267161c7f74a65cc7996f81b2ac0fb586413b0abd9a6ff026863c7146a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.34239$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.34239$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24399939$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Zhiwei</creatorcontrib><creatorcontrib>Buschle-Diller, Gisela</creatorcontrib><creatorcontrib>DeInnocentes, Patricia</creatorcontrib><creatorcontrib>Bird, R. Curtis</creatorcontrib><title>Electrospun poly(D,L)-lactide nonwoven mats for biomedical application: Surface area shrinkage and surface entrapment</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Nanofibrous poly(D,L)‐lactide mats prepared by electrospinning are useful for numerous biomedical applications. However, it was observed that these mats tend to shrink under physiological conditions. In this research, a physical entrapment method to modify the polymer surface with poly(ethylene glycol) was developed to ensure dimensional stability and to increase the hydrophilicity of the surface of the mats. Nanofiber morphology was characterized by scanning electron microscopy. Surface element analysis was performed by high resolution X‐ray photoelectron spectroscopy. Water contact angles were determined to identify surface properties before and after surface entrapment. Canine fibroblasts were prepared and seeded onto the poly(D,L)‐lactide mats, followed by cell morphology study by SEM and cell viability tests by MTT assay, which confirmed the improvement of biocompatibility by surface modification. Taking the results into account, hydrophilic and area‐stable nanofibrous nonwoven mats were successfully produced, with potential applications as in vivo biomedical material. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Electrospinning</subject><subject>Entrapment</subject><subject>Exact sciences and technology</subject><subject>Fibers and threads</subject><subject>Forms of application and semi-finished materials</subject><subject>L)-lactide</subject><subject>Materials science</subject><subject>Mats</subject><subject>Medical sciences</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>poly(D</subject><subject>poly(D,L)‐lactide</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>surface modification</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology of polymers</subject><subject>Technology. Biomaterials. Equipments</subject><subject>tissue engineering</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kV9rFDEUxQdRcK0--A0CIrTgtPkzSSa-lVpXYa3FVgq-hDvZRNPOJNNkxrrf3thd-yD4dO_l_s5JOLeqXhJ8SDCmRzCOh6yhTD2qFgQrWTeCto-rRdmRulWKP62e5XyNMSEci0U1n_bWTCnmcQ5ojP1m_92b1UHdg5n82qIQw138aQMaYMrIxYQ6Hwe79gZ6VN7qSzP5GN6iizk5MBZBsoDyj-TDDXwvY1ijvFvZMCUYh1KeV08c9Nm-2NW96uv708uTD_Xq8_LjyfGqNky1qmZAHG-pkEQQI51sQHBjpFLCtaSjYLDreCsawjoM3VqBcA5T0QpmJGkEsL1qf-s7png72zzpwWdj-x6CjXPWBFPaSkYaWdBX_6DXcU6h_E4TTkTbcE55oQ62lCmR5WSdHpMfIG2Klf5zAF1C0fcHKOzrnSPkEpdLEIzPDwLaMKXUPXe05e58bzf_N9TH5-d_neutwufJ_npQQLrRQjLJ9dXZUl8tP327WH0505fsN2TBo9w</recordid><startdate>20111015</startdate><enddate>20111015</enddate><creator>Xie, Zhiwei</creator><creator>Buschle-Diller, Gisela</creator><creator>DeInnocentes, Patricia</creator><creator>Bird, R. Curtis</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111015</creationdate><title>Electrospun poly(D,L)-lactide nonwoven mats for biomedical application: Surface area shrinkage and surface entrapment</title><author>Xie, Zhiwei ; Buschle-Diller, Gisela ; DeInnocentes, Patricia ; Bird, R. Curtis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3989-3a1f58267161c7f74a65cc7996f81b2ac0fb586413b0abd9a6ff026863c7146a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Electrospinning</topic><topic>Entrapment</topic><topic>Exact sciences and technology</topic><topic>Fibers and threads</topic><topic>Forms of application and semi-finished materials</topic><topic>L)-lactide</topic><topic>Materials science</topic><topic>Mats</topic><topic>Medical sciences</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>poly(D</topic><topic>poly(D,L)‐lactide</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>surface modification</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology of polymers</topic><topic>Technology. Biomaterials. Equipments</topic><topic>tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Zhiwei</creatorcontrib><creatorcontrib>Buschle-Diller, Gisela</creatorcontrib><creatorcontrib>DeInnocentes, Patricia</creatorcontrib><creatorcontrib>Bird, R. Curtis</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Zhiwei</au><au>Buschle-Diller, Gisela</au><au>DeInnocentes, Patricia</au><au>Bird, R. Curtis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun poly(D,L)-lactide nonwoven mats for biomedical application: Surface area shrinkage and surface entrapment</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2011-10-15</date><risdate>2011</risdate><volume>122</volume><issue>2</issue><spage>1219</spage><epage>1225</epage><pages>1219-1225</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Nanofibrous poly(D,L)‐lactide mats prepared by electrospinning are useful for numerous biomedical applications. However, it was observed that these mats tend to shrink under physiological conditions. In this research, a physical entrapment method to modify the polymer surface with poly(ethylene glycol) was developed to ensure dimensional stability and to increase the hydrophilicity of the surface of the mats. Nanofiber morphology was characterized by scanning electron microscopy. Surface element analysis was performed by high resolution X‐ray photoelectron spectroscopy. Water contact angles were determined to identify surface properties before and after surface entrapment. Canine fibroblasts were prepared and seeded onto the poly(D,L)‐lactide mats, followed by cell morphology study by SEM and cell viability tests by MTT assay, which confirmed the improvement of biocompatibility by surface modification. Taking the results into account, hydrophilic and area‐stable nanofibrous nonwoven mats were successfully produced, with potential applications as in vivo biomedical material. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.34239</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2011-10, Vol.122 (2), p.1219-1225
issn 0021-8995
1097-4628
1097-4628
language eng
recordid cdi_proquest_miscellaneous_1022873147
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Biological and medical sciences
Electrospinning
Entrapment
Exact sciences and technology
Fibers and threads
Forms of application and semi-finished materials
L)-lactide
Materials science
Mats
Medical sciences
Morphology
Nanocomposites
Nanomaterials
Nanostructure
poly(D
poly(D,L)‐lactide
Polymer industry, paints, wood
Polymers
surface modification
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Surgical implants
Technology of polymers
Technology. Biomaterials. Equipments
tissue engineering
title Electrospun poly(D,L)-lactide nonwoven mats for biomedical application: Surface area shrinkage and surface entrapment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20poly(D,L)-lactide%20nonwoven%20mats%20for%20biomedical%20application:%20Surface%20area%20shrinkage%20and%20surface%20entrapment&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Xie,%20Zhiwei&rft.date=2011-10-15&rft.volume=122&rft.issue=2&rft.spage=1219&rft.epage=1225&rft.pages=1219-1225&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.34239&rft_dat=%3Cproquest_cross%3E3277572541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1516845525&rft_id=info:pmid/&rfr_iscdi=true