Electrospun poly(D,L)-lactide nonwoven mats for biomedical application: Surface area shrinkage and surface entrapment
Nanofibrous poly(D,L)‐lactide mats prepared by electrospinning are useful for numerous biomedical applications. However, it was observed that these mats tend to shrink under physiological conditions. In this research, a physical entrapment method to modify the polymer surface with poly(ethylene glyc...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2011-10, Vol.122 (2), p.1219-1225 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1225 |
---|---|
container_issue | 2 |
container_start_page | 1219 |
container_title | Journal of applied polymer science |
container_volume | 122 |
creator | Xie, Zhiwei Buschle-Diller, Gisela DeInnocentes, Patricia Bird, R. Curtis |
description | Nanofibrous poly(D,L)‐lactide mats prepared by electrospinning are useful for numerous biomedical applications. However, it was observed that these mats tend to shrink under physiological conditions. In this research, a physical entrapment method to modify the polymer surface with poly(ethylene glycol) was developed to ensure dimensional stability and to increase the hydrophilicity of the surface of the mats. Nanofiber morphology was characterized by scanning electron microscopy. Surface element analysis was performed by high resolution X‐ray photoelectron spectroscopy. Water contact angles were determined to identify surface properties before and after surface entrapment. Canine fibroblasts were prepared and seeded onto the poly(D,L)‐lactide mats, followed by cell morphology study by SEM and cell viability tests by MTT assay, which confirmed the improvement of biocompatibility by surface modification. Taking the results into account, hydrophilic and area‐stable nanofibrous nonwoven mats were successfully produced, with potential applications as in vivo biomedical material. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 |
doi_str_mv | 10.1002/app.34239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022873147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3277572541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3989-3a1f58267161c7f74a65cc7996f81b2ac0fb586413b0abd9a6ff026863c7146a3</originalsourceid><addsrcrecordid>eNp1kV9rFDEUxQdRcK0--A0CIrTgtPkzSSa-lVpXYa3FVgq-hDvZRNPOJNNkxrrf3thd-yD4dO_l_s5JOLeqXhJ8SDCmRzCOh6yhTD2qFgQrWTeCto-rRdmRulWKP62e5XyNMSEci0U1n_bWTCnmcQ5ojP1m_92b1UHdg5n82qIQw138aQMaYMrIxYQ6Hwe79gZ6VN7qSzP5GN6iizk5MBZBsoDyj-TDDXwvY1ijvFvZMCUYh1KeV08c9Nm-2NW96uv708uTD_Xq8_LjyfGqNky1qmZAHG-pkEQQI51sQHBjpFLCtaSjYLDreCsawjoM3VqBcA5T0QpmJGkEsL1qf-s7png72zzpwWdj-x6CjXPWBFPaSkYaWdBX_6DXcU6h_E4TTkTbcE55oQ62lCmR5WSdHpMfIG2Klf5zAF1C0fcHKOzrnSPkEpdLEIzPDwLaMKXUPXe05e58bzf_N9TH5-d_neutwufJ_npQQLrRQjLJ9dXZUl8tP327WH0505fsN2TBo9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516845525</pqid></control><display><type>article</type><title>Electrospun poly(D,L)-lactide nonwoven mats for biomedical application: Surface area shrinkage and surface entrapment</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xie, Zhiwei ; Buschle-Diller, Gisela ; DeInnocentes, Patricia ; Bird, R. Curtis</creator><creatorcontrib>Xie, Zhiwei ; Buschle-Diller, Gisela ; DeInnocentes, Patricia ; Bird, R. Curtis</creatorcontrib><description>Nanofibrous poly(D,L)‐lactide mats prepared by electrospinning are useful for numerous biomedical applications. However, it was observed that these mats tend to shrink under physiological conditions. In this research, a physical entrapment method to modify the polymer surface with poly(ethylene glycol) was developed to ensure dimensional stability and to increase the hydrophilicity of the surface of the mats. Nanofiber morphology was characterized by scanning electron microscopy. Surface element analysis was performed by high resolution X‐ray photoelectron spectroscopy. Water contact angles were determined to identify surface properties before and after surface entrapment. Canine fibroblasts were prepared and seeded onto the poly(D,L)‐lactide mats, followed by cell morphology study by SEM and cell viability tests by MTT assay, which confirmed the improvement of biocompatibility by surface modification. Taking the results into account, hydrophilic and area‐stable nanofibrous nonwoven mats were successfully produced, with potential applications as in vivo biomedical material. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.34239</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Biological and medical sciences ; Electrospinning ; Entrapment ; Exact sciences and technology ; Fibers and threads ; Forms of application and semi-finished materials ; L)-lactide ; Materials science ; Mats ; Medical sciences ; Morphology ; Nanocomposites ; Nanomaterials ; Nanostructure ; poly(D ; poly(D,L)‐lactide ; Polymer industry, paints, wood ; Polymers ; surface modification ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology of polymers ; Technology. Biomaterials. Equipments ; tissue engineering</subject><ispartof>Journal of applied polymer science, 2011-10, Vol.122 (2), p.1219-1225</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3989-3a1f58267161c7f74a65cc7996f81b2ac0fb586413b0abd9a6ff026863c7146a3</citedby><cites>FETCH-LOGICAL-c3989-3a1f58267161c7f74a65cc7996f81b2ac0fb586413b0abd9a6ff026863c7146a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.34239$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.34239$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24399939$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Zhiwei</creatorcontrib><creatorcontrib>Buschle-Diller, Gisela</creatorcontrib><creatorcontrib>DeInnocentes, Patricia</creatorcontrib><creatorcontrib>Bird, R. Curtis</creatorcontrib><title>Electrospun poly(D,L)-lactide nonwoven mats for biomedical application: Surface area shrinkage and surface entrapment</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Nanofibrous poly(D,L)‐lactide mats prepared by electrospinning are useful for numerous biomedical applications. However, it was observed that these mats tend to shrink under physiological conditions. In this research, a physical entrapment method to modify the polymer surface with poly(ethylene glycol) was developed to ensure dimensional stability and to increase the hydrophilicity of the surface of the mats. Nanofiber morphology was characterized by scanning electron microscopy. Surface element analysis was performed by high resolution X‐ray photoelectron spectroscopy. Water contact angles were determined to identify surface properties before and after surface entrapment. Canine fibroblasts were prepared and seeded onto the poly(D,L)‐lactide mats, followed by cell morphology study by SEM and cell viability tests by MTT assay, which confirmed the improvement of biocompatibility by surface modification. Taking the results into account, hydrophilic and area‐stable nanofibrous nonwoven mats were successfully produced, with potential applications as in vivo biomedical material. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Electrospinning</subject><subject>Entrapment</subject><subject>Exact sciences and technology</subject><subject>Fibers and threads</subject><subject>Forms of application and semi-finished materials</subject><subject>L)-lactide</subject><subject>Materials science</subject><subject>Mats</subject><subject>Medical sciences</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>poly(D</subject><subject>poly(D,L)‐lactide</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>surface modification</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology of polymers</subject><subject>Technology. Biomaterials. Equipments</subject><subject>tissue engineering</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kV9rFDEUxQdRcK0--A0CIrTgtPkzSSa-lVpXYa3FVgq-hDvZRNPOJNNkxrrf3thd-yD4dO_l_s5JOLeqXhJ8SDCmRzCOh6yhTD2qFgQrWTeCto-rRdmRulWKP62e5XyNMSEci0U1n_bWTCnmcQ5ojP1m_92b1UHdg5n82qIQw138aQMaYMrIxYQ6Hwe79gZ6VN7qSzP5GN6iizk5MBZBsoDyj-TDDXwvY1ijvFvZMCUYh1KeV08c9Nm-2NW96uv708uTD_Xq8_LjyfGqNky1qmZAHG-pkEQQI51sQHBjpFLCtaSjYLDreCsawjoM3VqBcA5T0QpmJGkEsL1qf-s7png72zzpwWdj-x6CjXPWBFPaSkYaWdBX_6DXcU6h_E4TTkTbcE55oQ62lCmR5WSdHpMfIG2Klf5zAF1C0fcHKOzrnSPkEpdLEIzPDwLaMKXUPXe05e58bzf_N9TH5-d_neutwufJ_npQQLrRQjLJ9dXZUl8tP327WH0505fsN2TBo9w</recordid><startdate>20111015</startdate><enddate>20111015</enddate><creator>Xie, Zhiwei</creator><creator>Buschle-Diller, Gisela</creator><creator>DeInnocentes, Patricia</creator><creator>Bird, R. Curtis</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111015</creationdate><title>Electrospun poly(D,L)-lactide nonwoven mats for biomedical application: Surface area shrinkage and surface entrapment</title><author>Xie, Zhiwei ; Buschle-Diller, Gisela ; DeInnocentes, Patricia ; Bird, R. Curtis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3989-3a1f58267161c7f74a65cc7996f81b2ac0fb586413b0abd9a6ff026863c7146a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Electrospinning</topic><topic>Entrapment</topic><topic>Exact sciences and technology</topic><topic>Fibers and threads</topic><topic>Forms of application and semi-finished materials</topic><topic>L)-lactide</topic><topic>Materials science</topic><topic>Mats</topic><topic>Medical sciences</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>poly(D</topic><topic>poly(D,L)‐lactide</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>surface modification</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology of polymers</topic><topic>Technology. Biomaterials. Equipments</topic><topic>tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Zhiwei</creatorcontrib><creatorcontrib>Buschle-Diller, Gisela</creatorcontrib><creatorcontrib>DeInnocentes, Patricia</creatorcontrib><creatorcontrib>Bird, R. Curtis</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Zhiwei</au><au>Buschle-Diller, Gisela</au><au>DeInnocentes, Patricia</au><au>Bird, R. Curtis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun poly(D,L)-lactide nonwoven mats for biomedical application: Surface area shrinkage and surface entrapment</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2011-10-15</date><risdate>2011</risdate><volume>122</volume><issue>2</issue><spage>1219</spage><epage>1225</epage><pages>1219-1225</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Nanofibrous poly(D,L)‐lactide mats prepared by electrospinning are useful for numerous biomedical applications. However, it was observed that these mats tend to shrink under physiological conditions. In this research, a physical entrapment method to modify the polymer surface with poly(ethylene glycol) was developed to ensure dimensional stability and to increase the hydrophilicity of the surface of the mats. Nanofiber morphology was characterized by scanning electron microscopy. Surface element analysis was performed by high resolution X‐ray photoelectron spectroscopy. Water contact angles were determined to identify surface properties before and after surface entrapment. Canine fibroblasts were prepared and seeded onto the poly(D,L)‐lactide mats, followed by cell morphology study by SEM and cell viability tests by MTT assay, which confirmed the improvement of biocompatibility by surface modification. Taking the results into account, hydrophilic and area‐stable nanofibrous nonwoven mats were successfully produced, with potential applications as in vivo biomedical material. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.34239</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2011-10, Vol.122 (2), p.1219-1225 |
issn | 0021-8995 1097-4628 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_1022873147 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Biological and medical sciences Electrospinning Entrapment Exact sciences and technology Fibers and threads Forms of application and semi-finished materials L)-lactide Materials science Mats Medical sciences Morphology Nanocomposites Nanomaterials Nanostructure poly(D poly(D,L)‐lactide Polymer industry, paints, wood Polymers surface modification Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Surgical implants Technology of polymers Technology. Biomaterials. Equipments tissue engineering |
title | Electrospun poly(D,L)-lactide nonwoven mats for biomedical application: Surface area shrinkage and surface entrapment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20poly(D,L)-lactide%20nonwoven%20mats%20for%20biomedical%20application:%20Surface%20area%20shrinkage%20and%20surface%20entrapment&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Xie,%20Zhiwei&rft.date=2011-10-15&rft.volume=122&rft.issue=2&rft.spage=1219&rft.epage=1225&rft.pages=1219-1225&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.34239&rft_dat=%3Cproquest_cross%3E3277572541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1516845525&rft_id=info:pmid/&rfr_iscdi=true |