Modelling dynamic crack propagation using the scaled boundary finite element method
This study presents a novel application of the scaled boundary finite element method (SBFEM) to model dynamic crack propagation problems. Accurate dynamic stress intensity factors are extracted directly from the semi‐analytical solutions of SBFEM. They are then used in the dynamic fracture criteria...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2011-10, Vol.88 (4), p.329-349 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 349 |
---|---|
container_issue | 4 |
container_start_page | 329 |
container_title | International journal for numerical methods in engineering |
container_volume | 88 |
creator | Ooi, E. T. Yang, Z. J. |
description | This study presents a novel application of the scaled boundary finite element method (SBFEM) to model dynamic crack propagation problems. Accurate dynamic stress intensity factors are extracted directly from the semi‐analytical solutions of SBFEM. They are then used in the dynamic fracture criteria to determine the crack‐tip position, velocity and propagation direction. A simple, yet flexible remeshing algorithm is used to accommodate crack propagation. Three dynamic crack propagation problems that include mode‐I and mix‐mode fracture are modelled. The results show good agreement with experimental and numerical results available in the literature. It is found that the developed method offers some advantages over conventional FEM in terms of accuracy, efficiency and ease of implementation. Copyright © 2011 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.3177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022870033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022870033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3667-1d4d3e1b000f428e0a44d3f554ad3816cb3975e88fe99c02c57212d169b5b3533</originalsourceid><addsrcrecordid>eNp1kNFK5DAUhsPiwo6zC_sIuRG86XiSNE17KaKjoCOiy16GNDnVaJuOTQedtzfFYfDGqwPnfHyc_yfkL4MFA-AnocOFYEr9IDMGlcqAgzogs3SqMlmV7Bc5jPEZgDEJYkbub3qHbevDI3XbYDpvqR2MfaHroV-bRzP6PtBNnO7jE9JoTYuO1v0mODNsaeODH5Fiix2GkXY4PvXuN_nZmDbin92ck38X5w9nl9n17fLq7PQ6s6IoVMZc7gSyGgCanJcIJk-LRsrcOFGywtaiUhLLssGqssCtVJxxx4qqlrWQQszJ8ac3_fq6wTjqzkeb0piA_SZqBpyXCkB8Qe3Qxzhgo9eD71KCBOmpN51601NvCT3aWc2UthlMsD7ueZ5LoYBNyuyTe_Mtbr_16dXN-c67430c8X3Pm-FFF0ooqf-vljoFXi3FxZ0W4gOawYn-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022870033</pqid></control><display><type>article</type><title>Modelling dynamic crack propagation using the scaled boundary finite element method</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ooi, E. T. ; Yang, Z. J.</creator><creatorcontrib>Ooi, E. T. ; Yang, Z. J.</creatorcontrib><description>This study presents a novel application of the scaled boundary finite element method (SBFEM) to model dynamic crack propagation problems. Accurate dynamic stress intensity factors are extracted directly from the semi‐analytical solutions of SBFEM. They are then used in the dynamic fracture criteria to determine the crack‐tip position, velocity and propagation direction. A simple, yet flexible remeshing algorithm is used to accommodate crack propagation. Three dynamic crack propagation problems that include mode‐I and mix‐mode fracture are modelled. The results show good agreement with experimental and numerical results available in the literature. It is found that the developed method offers some advantages over conventional FEM in terms of accuracy, efficiency and ease of implementation. Copyright © 2011 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>ISSN: 1097-0207</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.3177</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Accuracy ; Boundary element method ; Computational techniques ; crack arrest ; Crack propagation ; dynamic crack propagation ; Dynamics ; Exact sciences and technology ; Finite element method ; Finite-element and galerkin methods ; fracture ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis. Scientific computation ; Physics ; remeshing ; scaled boundary finite element method ; Sciences and techniques of general use ; Solid mechanics ; stress intensity factors ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>International journal for numerical methods in engineering, 2011-10, Vol.88 (4), p.329-349</ispartof><rights>Copyright © 2011 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3667-1d4d3e1b000f428e0a44d3f554ad3816cb3975e88fe99c02c57212d169b5b3533</citedby><cites>FETCH-LOGICAL-c3667-1d4d3e1b000f428e0a44d3f554ad3816cb3975e88fe99c02c57212d169b5b3533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.3177$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.3177$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24537013$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ooi, E. T.</creatorcontrib><creatorcontrib>Yang, Z. J.</creatorcontrib><title>Modelling dynamic crack propagation using the scaled boundary finite element method</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>This study presents a novel application of the scaled boundary finite element method (SBFEM) to model dynamic crack propagation problems. Accurate dynamic stress intensity factors are extracted directly from the semi‐analytical solutions of SBFEM. They are then used in the dynamic fracture criteria to determine the crack‐tip position, velocity and propagation direction. A simple, yet flexible remeshing algorithm is used to accommodate crack propagation. Three dynamic crack propagation problems that include mode‐I and mix‐mode fracture are modelled. The results show good agreement with experimental and numerical results available in the literature. It is found that the developed method offers some advantages over conventional FEM in terms of accuracy, efficiency and ease of implementation. Copyright © 2011 John Wiley & Sons, Ltd.</description><subject>Accuracy</subject><subject>Boundary element method</subject><subject>Computational techniques</subject><subject>crack arrest</subject><subject>Crack propagation</subject><subject>dynamic crack propagation</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite-element and galerkin methods</subject><subject>fracture</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis. Scientific computation</subject><subject>Physics</subject><subject>remeshing</subject><subject>scaled boundary finite element method</subject><subject>Sciences and techniques of general use</subject><subject>Solid mechanics</subject><subject>stress intensity factors</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0029-5981</issn><issn>1097-0207</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kNFK5DAUhsPiwo6zC_sIuRG86XiSNE17KaKjoCOiy16GNDnVaJuOTQedtzfFYfDGqwPnfHyc_yfkL4MFA-AnocOFYEr9IDMGlcqAgzogs3SqMlmV7Bc5jPEZgDEJYkbub3qHbevDI3XbYDpvqR2MfaHroV-bRzP6PtBNnO7jE9JoTYuO1v0mODNsaeODH5Fiix2GkXY4PvXuN_nZmDbin92ck38X5w9nl9n17fLq7PQ6s6IoVMZc7gSyGgCanJcIJk-LRsrcOFGywtaiUhLLssGqssCtVJxxx4qqlrWQQszJ8ac3_fq6wTjqzkeb0piA_SZqBpyXCkB8Qe3Qxzhgo9eD71KCBOmpN51601NvCT3aWc2UthlMsD7ueZ5LoYBNyuyTe_Mtbr_16dXN-c67430c8X3Pm-FFF0ooqf-vljoFXi3FxZ0W4gOawYn-</recordid><startdate>20111028</startdate><enddate>20111028</enddate><creator>Ooi, E. T.</creator><creator>Yang, Z. J.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111028</creationdate><title>Modelling dynamic crack propagation using the scaled boundary finite element method</title><author>Ooi, E. T. ; Yang, Z. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3667-1d4d3e1b000f428e0a44d3f554ad3816cb3975e88fe99c02c57212d169b5b3533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Boundary element method</topic><topic>Computational techniques</topic><topic>crack arrest</topic><topic>Crack propagation</topic><topic>dynamic crack propagation</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite-element and galerkin methods</topic><topic>fracture</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis. Scientific computation</topic><topic>Physics</topic><topic>remeshing</topic><topic>scaled boundary finite element method</topic><topic>Sciences and techniques of general use</topic><topic>Solid mechanics</topic><topic>stress intensity factors</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ooi, E. T.</creatorcontrib><creatorcontrib>Yang, Z. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ooi, E. T.</au><au>Yang, Z. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling dynamic crack propagation using the scaled boundary finite element method</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2011-10-28</date><risdate>2011</risdate><volume>88</volume><issue>4</issue><spage>329</spage><epage>349</epage><pages>329-349</pages><issn>0029-5981</issn><issn>1097-0207</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>This study presents a novel application of the scaled boundary finite element method (SBFEM) to model dynamic crack propagation problems. Accurate dynamic stress intensity factors are extracted directly from the semi‐analytical solutions of SBFEM. They are then used in the dynamic fracture criteria to determine the crack‐tip position, velocity and propagation direction. A simple, yet flexible remeshing algorithm is used to accommodate crack propagation. Three dynamic crack propagation problems that include mode‐I and mix‐mode fracture are modelled. The results show good agreement with experimental and numerical results available in the literature. It is found that the developed method offers some advantages over conventional FEM in terms of accuracy, efficiency and ease of implementation. Copyright © 2011 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.3177</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2011-10, Vol.88 (4), p.329-349 |
issn | 0029-5981 1097-0207 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1022870033 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accuracy Boundary element method Computational techniques crack arrest Crack propagation dynamic crack propagation Dynamics Exact sciences and technology Finite element method Finite-element and galerkin methods fracture Fracture mechanics Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical methods in physics Mathematical models Mathematics Methods of scientific computing (including symbolic computation, algebraic computation) Numerical analysis. Scientific computation Physics remeshing scaled boundary finite element method Sciences and techniques of general use Solid mechanics stress intensity factors Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Modelling dynamic crack propagation using the scaled boundary finite element method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20dynamic%20crack%20propagation%20using%20the%20scaled%20boundary%20finite%20element%20method&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Ooi,%20E.%20T.&rft.date=2011-10-28&rft.volume=88&rft.issue=4&rft.spage=329&rft.epage=349&rft.pages=329-349&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.3177&rft_dat=%3Cproquest_cross%3E1022870033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022870033&rft_id=info:pmid/&rfr_iscdi=true |