Modelling dynamic crack propagation using the scaled boundary finite element method

This study presents a novel application of the scaled boundary finite element method (SBFEM) to model dynamic crack propagation problems. Accurate dynamic stress intensity factors are extracted directly from the semi‐analytical solutions of SBFEM. They are then used in the dynamic fracture criteria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2011-10, Vol.88 (4), p.329-349
Hauptverfasser: Ooi, E. T., Yang, Z. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue 4
container_start_page 329
container_title International journal for numerical methods in engineering
container_volume 88
creator Ooi, E. T.
Yang, Z. J.
description This study presents a novel application of the scaled boundary finite element method (SBFEM) to model dynamic crack propagation problems. Accurate dynamic stress intensity factors are extracted directly from the semi‐analytical solutions of SBFEM. They are then used in the dynamic fracture criteria to determine the crack‐tip position, velocity and propagation direction. A simple, yet flexible remeshing algorithm is used to accommodate crack propagation. Three dynamic crack propagation problems that include mode‐I and mix‐mode fracture are modelled. The results show good agreement with experimental and numerical results available in the literature. It is found that the developed method offers some advantages over conventional FEM in terms of accuracy, efficiency and ease of implementation. Copyright © 2011 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.3177
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022870033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022870033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3667-1d4d3e1b000f428e0a44d3f554ad3816cb3975e88fe99c02c57212d169b5b3533</originalsourceid><addsrcrecordid>eNp1kNFK5DAUhsPiwo6zC_sIuRG86XiSNE17KaKjoCOiy16GNDnVaJuOTQedtzfFYfDGqwPnfHyc_yfkL4MFA-AnocOFYEr9IDMGlcqAgzogs3SqMlmV7Bc5jPEZgDEJYkbub3qHbevDI3XbYDpvqR2MfaHroV-bRzP6PtBNnO7jE9JoTYuO1v0mODNsaeODH5Fiix2GkXY4PvXuN_nZmDbin92ck38X5w9nl9n17fLq7PQ6s6IoVMZc7gSyGgCanJcIJk-LRsrcOFGywtaiUhLLssGqssCtVJxxx4qqlrWQQszJ8ac3_fq6wTjqzkeb0piA_SZqBpyXCkB8Qe3Qxzhgo9eD71KCBOmpN51601NvCT3aWc2UthlMsD7ueZ5LoYBNyuyTe_Mtbr_16dXN-c67430c8X3Pm-FFF0ooqf-vljoFXi3FxZ0W4gOawYn-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022870033</pqid></control><display><type>article</type><title>Modelling dynamic crack propagation using the scaled boundary finite element method</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ooi, E. T. ; Yang, Z. J.</creator><creatorcontrib>Ooi, E. T. ; Yang, Z. J.</creatorcontrib><description>This study presents a novel application of the scaled boundary finite element method (SBFEM) to model dynamic crack propagation problems. Accurate dynamic stress intensity factors are extracted directly from the semi‐analytical solutions of SBFEM. They are then used in the dynamic fracture criteria to determine the crack‐tip position, velocity and propagation direction. A simple, yet flexible remeshing algorithm is used to accommodate crack propagation. Three dynamic crack propagation problems that include mode‐I and mix‐mode fracture are modelled. The results show good agreement with experimental and numerical results available in the literature. It is found that the developed method offers some advantages over conventional FEM in terms of accuracy, efficiency and ease of implementation. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>ISSN: 1097-0207</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.3177</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Accuracy ; Boundary element method ; Computational techniques ; crack arrest ; Crack propagation ; dynamic crack propagation ; Dynamics ; Exact sciences and technology ; Finite element method ; Finite-element and galerkin methods ; fracture ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis. Scientific computation ; Physics ; remeshing ; scaled boundary finite element method ; Sciences and techniques of general use ; Solid mechanics ; stress intensity factors ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>International journal for numerical methods in engineering, 2011-10, Vol.88 (4), p.329-349</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3667-1d4d3e1b000f428e0a44d3f554ad3816cb3975e88fe99c02c57212d169b5b3533</citedby><cites>FETCH-LOGICAL-c3667-1d4d3e1b000f428e0a44d3f554ad3816cb3975e88fe99c02c57212d169b5b3533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.3177$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.3177$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24537013$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ooi, E. T.</creatorcontrib><creatorcontrib>Yang, Z. J.</creatorcontrib><title>Modelling dynamic crack propagation using the scaled boundary finite element method</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>This study presents a novel application of the scaled boundary finite element method (SBFEM) to model dynamic crack propagation problems. Accurate dynamic stress intensity factors are extracted directly from the semi‐analytical solutions of SBFEM. They are then used in the dynamic fracture criteria to determine the crack‐tip position, velocity and propagation direction. A simple, yet flexible remeshing algorithm is used to accommodate crack propagation. Three dynamic crack propagation problems that include mode‐I and mix‐mode fracture are modelled. The results show good agreement with experimental and numerical results available in the literature. It is found that the developed method offers some advantages over conventional FEM in terms of accuracy, efficiency and ease of implementation. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><subject>Accuracy</subject><subject>Boundary element method</subject><subject>Computational techniques</subject><subject>crack arrest</subject><subject>Crack propagation</subject><subject>dynamic crack propagation</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite-element and galerkin methods</subject><subject>fracture</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis. Scientific computation</subject><subject>Physics</subject><subject>remeshing</subject><subject>scaled boundary finite element method</subject><subject>Sciences and techniques of general use</subject><subject>Solid mechanics</subject><subject>stress intensity factors</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0029-5981</issn><issn>1097-0207</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kNFK5DAUhsPiwo6zC_sIuRG86XiSNE17KaKjoCOiy16GNDnVaJuOTQedtzfFYfDGqwPnfHyc_yfkL4MFA-AnocOFYEr9IDMGlcqAgzogs3SqMlmV7Bc5jPEZgDEJYkbub3qHbevDI3XbYDpvqR2MfaHroV-bRzP6PtBNnO7jE9JoTYuO1v0mODNsaeODH5Fiix2GkXY4PvXuN_nZmDbin92ck38X5w9nl9n17fLq7PQ6s6IoVMZc7gSyGgCanJcIJk-LRsrcOFGywtaiUhLLssGqssCtVJxxx4qqlrWQQszJ8ac3_fq6wTjqzkeb0piA_SZqBpyXCkB8Qe3Qxzhgo9eD71KCBOmpN51601NvCT3aWc2UthlMsD7ueZ5LoYBNyuyTe_Mtbr_16dXN-c67430c8X3Pm-FFF0ooqf-vljoFXi3FxZ0W4gOawYn-</recordid><startdate>20111028</startdate><enddate>20111028</enddate><creator>Ooi, E. T.</creator><creator>Yang, Z. J.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111028</creationdate><title>Modelling dynamic crack propagation using the scaled boundary finite element method</title><author>Ooi, E. T. ; Yang, Z. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3667-1d4d3e1b000f428e0a44d3f554ad3816cb3975e88fe99c02c57212d169b5b3533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Boundary element method</topic><topic>Computational techniques</topic><topic>crack arrest</topic><topic>Crack propagation</topic><topic>dynamic crack propagation</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite-element and galerkin methods</topic><topic>fracture</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis. Scientific computation</topic><topic>Physics</topic><topic>remeshing</topic><topic>scaled boundary finite element method</topic><topic>Sciences and techniques of general use</topic><topic>Solid mechanics</topic><topic>stress intensity factors</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ooi, E. T.</creatorcontrib><creatorcontrib>Yang, Z. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ooi, E. T.</au><au>Yang, Z. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling dynamic crack propagation using the scaled boundary finite element method</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2011-10-28</date><risdate>2011</risdate><volume>88</volume><issue>4</issue><spage>329</spage><epage>349</epage><pages>329-349</pages><issn>0029-5981</issn><issn>1097-0207</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>This study presents a novel application of the scaled boundary finite element method (SBFEM) to model dynamic crack propagation problems. Accurate dynamic stress intensity factors are extracted directly from the semi‐analytical solutions of SBFEM. They are then used in the dynamic fracture criteria to determine the crack‐tip position, velocity and propagation direction. A simple, yet flexible remeshing algorithm is used to accommodate crack propagation. Three dynamic crack propagation problems that include mode‐I and mix‐mode fracture are modelled. The results show good agreement with experimental and numerical results available in the literature. It is found that the developed method offers some advantages over conventional FEM in terms of accuracy, efficiency and ease of implementation. Copyright © 2011 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.3177</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2011-10, Vol.88 (4), p.329-349
issn 0029-5981
1097-0207
1097-0207
language eng
recordid cdi_proquest_miscellaneous_1022870033
source Wiley Online Library Journals Frontfile Complete
subjects Accuracy
Boundary element method
Computational techniques
crack arrest
Crack propagation
dynamic crack propagation
Dynamics
Exact sciences and technology
Finite element method
Finite-element and galerkin methods
fracture
Fracture mechanics
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematical methods in physics
Mathematical models
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical analysis. Scientific computation
Physics
remeshing
scaled boundary finite element method
Sciences and techniques of general use
Solid mechanics
stress intensity factors
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Modelling dynamic crack propagation using the scaled boundary finite element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20dynamic%20crack%20propagation%20using%20the%20scaled%20boundary%20finite%20element%20method&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Ooi,%20E.%20T.&rft.date=2011-10-28&rft.volume=88&rft.issue=4&rft.spage=329&rft.epage=349&rft.pages=329-349&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.3177&rft_dat=%3Cproquest_cross%3E1022870033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022870033&rft_id=info:pmid/&rfr_iscdi=true