Influence of branching architecture on polymer properties
Hyperbranched polymers (HBPs), invented at the end of 1980s, are one important subclass of the fourth generation macromolecular architectures following the linear, branched, and crosslinking polymers. Due to their unique topological structure and interesting physical/chemical properties, HBPs have a...
Gespeichert in:
Veröffentlicht in: | Journal of polymer science. Part B, Polymer physics Polymer physics, 2011-09, Vol.49 (18), p.1277-1286 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1286 |
---|---|
container_issue | 18 |
container_start_page | 1277 |
container_title | Journal of polymer science. Part B, Polymer physics |
container_volume | 49 |
creator | Zhu, Xinyuan Zhou, Yongfeng Yan, Deyue |
description | Hyperbranched polymers (HBPs), invented at the end of 1980s, are one important subclass of the fourth generation macromolecular architectures following the linear, branched, and crosslinking polymers. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. HBPs are composed of linear units, dendritic units, and terminal units. The degree of branching (DB), a term to describe the composition of these three structure units and thus the branching architecture of polymers, is one of the most important intrinsic parameters for HBPs. This review has summarized the effect of the DB on the physical and chemical properties of HBPs, including the rheological property, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transition, optoelectronic properties, encapsulation capability, self‐assembly behavior, biomedical applications, and so on. Such a structure and property relationship will build a bridge between the syntheses and applications of HBPs, especially in the application areas of functional materials, biomedical materials, and nanotechnology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1277–1286, 2011
The architectures, properties, and potential applications of hyperbranched polymers (HBPs) are highly dependent on their degree of branching (DB). This review summarizes the effect of the DB on the physical and chemical properties of HBPs, including rheological properties, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transitions, optoelectronic properties, encapsulation capability, self‐assembly behavior, and biomedical applications. The structure‐property relations will build a bridge between the syntheses and applications of highly branched polymers. |
doi_str_mv | 10.1002/polb.22320 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022869418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022869418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4770-fe1195b6512fe6d66eb7ea03c9a61a1a89b8ce4211795142fc69c52c29dd50883</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QuyQUJIKbbj-LEEREulirLgsbQcdwKBNAl2Iujf45DSJatZzLnHnovQKcETgjG9bOoym1CaULyHRgQrFWMm5T4aYSlFzCnnh-jI-3eMwy5VI6TmVV52UFmI6jzKnKnsW1G9RsaF2YJtOxc2VRTEmzW4qHF1A64twB-jg9yUHk62c4yeprePN3fxYjmb31wtYsuEwHEOhKg04ymhOfAV55AJMDixynBiiJEqkxYYJUSolDCaW65sSi1Vq1Uafp2M0fngDU9_duBbvS68hbI0FdSd1wRTKrlipEcvBtS62nsHuW5csTZuEyDd96P7fvRvPwE-23qNt6bM-9MLv0tQxiTDIgkcGbivooTNP0b9sFxc_7njIVP4Fr53GeM-NBeJSPXL_Uwz_jwjdEq0TH4AY1iDNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022869418</pqid></control><display><type>article</type><title>Influence of branching architecture on polymer properties</title><source>Access via Wiley Online Library</source><creator>Zhu, Xinyuan ; Zhou, Yongfeng ; Yan, Deyue</creator><creatorcontrib>Zhu, Xinyuan ; Zhou, Yongfeng ; Yan, Deyue</creatorcontrib><description>Hyperbranched polymers (HBPs), invented at the end of 1980s, are one important subclass of the fourth generation macromolecular architectures following the linear, branched, and crosslinking polymers. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. HBPs are composed of linear units, dendritic units, and terminal units. The degree of branching (DB), a term to describe the composition of these three structure units and thus the branching architecture of polymers, is one of the most important intrinsic parameters for HBPs. This review has summarized the effect of the DB on the physical and chemical properties of HBPs, including the rheological property, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transition, optoelectronic properties, encapsulation capability, self‐assembly behavior, biomedical applications, and so on. Such a structure and property relationship will build a bridge between the syntheses and applications of HBPs, especially in the application areas of functional materials, biomedical materials, and nanotechnology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1277–1286, 2011
The architectures, properties, and potential applications of hyperbranched polymers (HBPs) are highly dependent on their degree of branching (DB). This review summarizes the effect of the DB on the physical and chemical properties of HBPs, including rheological properties, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transitions, optoelectronic properties, encapsulation capability, self‐assembly behavior, and biomedical applications. The structure‐property relations will build a bridge between the syntheses and applications of highly branched polymers.</description><identifier>ISSN: 0887-6266</identifier><identifier>ISSN: 1099-0488</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.22320</identifier><identifier>CODEN: JPLPAY</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>applications ; Applied sciences ; Architecture ; Biomedical materials ; branching architecture ; Chemical properties ; Crosslinking ; degree of branching ; Exact sciences and technology ; hyperbranched ; linear polymers ; Nanotechnology ; Noise levels ; Organic polymers ; Phase transformations ; Physicochemistry of polymers ; polymer properties ; Properties and characterization ; Self assembly ; structure-property relations</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 2011-09, Vol.49 (18), p.1277-1286</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4770-fe1195b6512fe6d66eb7ea03c9a61a1a89b8ce4211795142fc69c52c29dd50883</citedby><cites>FETCH-LOGICAL-c4770-fe1195b6512fe6d66eb7ea03c9a61a1a89b8ce4211795142fc69c52c29dd50883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.22320$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.22320$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24484073$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xinyuan</creatorcontrib><creatorcontrib>Zhou, Yongfeng</creatorcontrib><creatorcontrib>Yan, Deyue</creatorcontrib><title>Influence of branching architecture on polymer properties</title><title>Journal of polymer science. Part B, Polymer physics</title><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><description>Hyperbranched polymers (HBPs), invented at the end of 1980s, are one important subclass of the fourth generation macromolecular architectures following the linear, branched, and crosslinking polymers. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. HBPs are composed of linear units, dendritic units, and terminal units. The degree of branching (DB), a term to describe the composition of these three structure units and thus the branching architecture of polymers, is one of the most important intrinsic parameters for HBPs. This review has summarized the effect of the DB on the physical and chemical properties of HBPs, including the rheological property, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transition, optoelectronic properties, encapsulation capability, self‐assembly behavior, biomedical applications, and so on. Such a structure and property relationship will build a bridge between the syntheses and applications of HBPs, especially in the application areas of functional materials, biomedical materials, and nanotechnology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1277–1286, 2011
The architectures, properties, and potential applications of hyperbranched polymers (HBPs) are highly dependent on their degree of branching (DB). This review summarizes the effect of the DB on the physical and chemical properties of HBPs, including rheological properties, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transitions, optoelectronic properties, encapsulation capability, self‐assembly behavior, and biomedical applications. The structure‐property relations will build a bridge between the syntheses and applications of highly branched polymers.</description><subject>applications</subject><subject>Applied sciences</subject><subject>Architecture</subject><subject>Biomedical materials</subject><subject>branching architecture</subject><subject>Chemical properties</subject><subject>Crosslinking</subject><subject>degree of branching</subject><subject>Exact sciences and technology</subject><subject>hyperbranched</subject><subject>linear polymers</subject><subject>Nanotechnology</subject><subject>Noise levels</subject><subject>Organic polymers</subject><subject>Phase transformations</subject><subject>Physicochemistry of polymers</subject><subject>polymer properties</subject><subject>Properties and characterization</subject><subject>Self assembly</subject><subject>structure-property relations</subject><issn>0887-6266</issn><issn>1099-0488</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4QuyQUJIKbbj-LEEREulirLgsbQcdwKBNAl2Iujf45DSJatZzLnHnovQKcETgjG9bOoym1CaULyHRgQrFWMm5T4aYSlFzCnnh-jI-3eMwy5VI6TmVV52UFmI6jzKnKnsW1G9RsaF2YJtOxc2VRTEmzW4qHF1A64twB-jg9yUHk62c4yeprePN3fxYjmb31wtYsuEwHEOhKg04ymhOfAV55AJMDixynBiiJEqkxYYJUSolDCaW65sSi1Vq1Uafp2M0fngDU9_duBbvS68hbI0FdSd1wRTKrlipEcvBtS62nsHuW5csTZuEyDd96P7fvRvPwE-23qNt6bM-9MLv0tQxiTDIgkcGbivooTNP0b9sFxc_7njIVP4Fr53GeM-NBeJSPXL_Uwz_jwjdEq0TH4AY1iDNA</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Zhu, Xinyuan</creator><creator>Zhou, Yongfeng</creator><creator>Yan, Deyue</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110915</creationdate><title>Influence of branching architecture on polymer properties</title><author>Zhu, Xinyuan ; Zhou, Yongfeng ; Yan, Deyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4770-fe1195b6512fe6d66eb7ea03c9a61a1a89b8ce4211795142fc69c52c29dd50883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>applications</topic><topic>Applied sciences</topic><topic>Architecture</topic><topic>Biomedical materials</topic><topic>branching architecture</topic><topic>Chemical properties</topic><topic>Crosslinking</topic><topic>degree of branching</topic><topic>Exact sciences and technology</topic><topic>hyperbranched</topic><topic>linear polymers</topic><topic>Nanotechnology</topic><topic>Noise levels</topic><topic>Organic polymers</topic><topic>Phase transformations</topic><topic>Physicochemistry of polymers</topic><topic>polymer properties</topic><topic>Properties and characterization</topic><topic>Self assembly</topic><topic>structure-property relations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xinyuan</creatorcontrib><creatorcontrib>Zhou, Yongfeng</creatorcontrib><creatorcontrib>Yan, Deyue</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xinyuan</au><au>Zhou, Yongfeng</au><au>Yan, Deyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of branching architecture on polymer properties</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><date>2011-09-15</date><risdate>2011</risdate><volume>49</volume><issue>18</issue><spage>1277</spage><epage>1286</epage><pages>1277-1286</pages><issn>0887-6266</issn><issn>1099-0488</issn><eissn>1099-0488</eissn><coden>JPLPAY</coden><abstract>Hyperbranched polymers (HBPs), invented at the end of 1980s, are one important subclass of the fourth generation macromolecular architectures following the linear, branched, and crosslinking polymers. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. HBPs are composed of linear units, dendritic units, and terminal units. The degree of branching (DB), a term to describe the composition of these three structure units and thus the branching architecture of polymers, is one of the most important intrinsic parameters for HBPs. This review has summarized the effect of the DB on the physical and chemical properties of HBPs, including the rheological property, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transition, optoelectronic properties, encapsulation capability, self‐assembly behavior, biomedical applications, and so on. Such a structure and property relationship will build a bridge between the syntheses and applications of HBPs, especially in the application areas of functional materials, biomedical materials, and nanotechnology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1277–1286, 2011
The architectures, properties, and potential applications of hyperbranched polymers (HBPs) are highly dependent on their degree of branching (DB). This review summarizes the effect of the DB on the physical and chemical properties of HBPs, including rheological properties, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transitions, optoelectronic properties, encapsulation capability, self‐assembly behavior, and biomedical applications. The structure‐property relations will build a bridge between the syntheses and applications of highly branched polymers.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/polb.22320</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-6266 |
ispartof | Journal of polymer science. Part B, Polymer physics, 2011-09, Vol.49 (18), p.1277-1286 |
issn | 0887-6266 1099-0488 1099-0488 |
language | eng |
recordid | cdi_proquest_miscellaneous_1022869418 |
source | Access via Wiley Online Library |
subjects | applications Applied sciences Architecture Biomedical materials branching architecture Chemical properties Crosslinking degree of branching Exact sciences and technology hyperbranched linear polymers Nanotechnology Noise levels Organic polymers Phase transformations Physicochemistry of polymers polymer properties Properties and characterization Self assembly structure-property relations |
title | Influence of branching architecture on polymer properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20branching%20architecture%20on%20polymer%20properties&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Zhu,%20Xinyuan&rft.date=2011-09-15&rft.volume=49&rft.issue=18&rft.spage=1277&rft.epage=1286&rft.pages=1277-1286&rft.issn=0887-6266&rft.eissn=1099-0488&rft.coden=JPLPAY&rft_id=info:doi/10.1002/polb.22320&rft_dat=%3Cproquest_cross%3E1022869418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022869418&rft_id=info:pmid/&rfr_iscdi=true |