Influence of branching architecture on polymer properties

Hyperbranched polymers (HBPs), invented at the end of 1980s, are one important subclass of the fourth generation macromolecular architectures following the linear, branched, and crosslinking polymers. Due to their unique topological structure and interesting physical/chemical properties, HBPs have a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part B, Polymer physics Polymer physics, 2011-09, Vol.49 (18), p.1277-1286
Hauptverfasser: Zhu, Xinyuan, Zhou, Yongfeng, Yan, Deyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1286
container_issue 18
container_start_page 1277
container_title Journal of polymer science. Part B, Polymer physics
container_volume 49
creator Zhu, Xinyuan
Zhou, Yongfeng
Yan, Deyue
description Hyperbranched polymers (HBPs), invented at the end of 1980s, are one important subclass of the fourth generation macromolecular architectures following the linear, branched, and crosslinking polymers. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. HBPs are composed of linear units, dendritic units, and terminal units. The degree of branching (DB), a term to describe the composition of these three structure units and thus the branching architecture of polymers, is one of the most important intrinsic parameters for HBPs. This review has summarized the effect of the DB on the physical and chemical properties of HBPs, including the rheological property, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transition, optoelectronic properties, encapsulation capability, self‐assembly behavior, biomedical applications, and so on. Such a structure and property relationship will build a bridge between the syntheses and applications of HBPs, especially in the application areas of functional materials, biomedical materials, and nanotechnology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1277–1286, 2011 The architectures, properties, and potential applications of hyperbranched polymers (HBPs) are highly dependent on their degree of branching (DB). This review summarizes the effect of the DB on the physical and chemical properties of HBPs, including rheological properties, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transitions, optoelectronic properties, encapsulation capability, self‐assembly behavior, and biomedical applications. The structure‐property relations will build a bridge between the syntheses and applications of highly branched polymers.
doi_str_mv 10.1002/polb.22320
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022869418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022869418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4770-fe1195b6512fe6d66eb7ea03c9a61a1a89b8ce4211795142fc69c52c29dd50883</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QuyQUJIKbbj-LEEREulirLgsbQcdwKBNAl2Iujf45DSJatZzLnHnovQKcETgjG9bOoym1CaULyHRgQrFWMm5T4aYSlFzCnnh-jI-3eMwy5VI6TmVV52UFmI6jzKnKnsW1G9RsaF2YJtOxc2VRTEmzW4qHF1A64twB-jg9yUHk62c4yeprePN3fxYjmb31wtYsuEwHEOhKg04ymhOfAV55AJMDixynBiiJEqkxYYJUSolDCaW65sSi1Vq1Uafp2M0fngDU9_duBbvS68hbI0FdSd1wRTKrlipEcvBtS62nsHuW5csTZuEyDd96P7fvRvPwE-23qNt6bM-9MLv0tQxiTDIgkcGbivooTNP0b9sFxc_7njIVP4Fr53GeM-NBeJSPXL_Uwz_jwjdEq0TH4AY1iDNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022869418</pqid></control><display><type>article</type><title>Influence of branching architecture on polymer properties</title><source>Access via Wiley Online Library</source><creator>Zhu, Xinyuan ; Zhou, Yongfeng ; Yan, Deyue</creator><creatorcontrib>Zhu, Xinyuan ; Zhou, Yongfeng ; Yan, Deyue</creatorcontrib><description>Hyperbranched polymers (HBPs), invented at the end of 1980s, are one important subclass of the fourth generation macromolecular architectures following the linear, branched, and crosslinking polymers. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. HBPs are composed of linear units, dendritic units, and terminal units. The degree of branching (DB), a term to describe the composition of these three structure units and thus the branching architecture of polymers, is one of the most important intrinsic parameters for HBPs. This review has summarized the effect of the DB on the physical and chemical properties of HBPs, including the rheological property, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transition, optoelectronic properties, encapsulation capability, self‐assembly behavior, biomedical applications, and so on. Such a structure and property relationship will build a bridge between the syntheses and applications of HBPs, especially in the application areas of functional materials, biomedical materials, and nanotechnology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1277–1286, 2011 The architectures, properties, and potential applications of hyperbranched polymers (HBPs) are highly dependent on their degree of branching (DB). This review summarizes the effect of the DB on the physical and chemical properties of HBPs, including rheological properties, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transitions, optoelectronic properties, encapsulation capability, self‐assembly behavior, and biomedical applications. The structure‐property relations will build a bridge between the syntheses and applications of highly branched polymers.</description><identifier>ISSN: 0887-6266</identifier><identifier>ISSN: 1099-0488</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.22320</identifier><identifier>CODEN: JPLPAY</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>applications ; Applied sciences ; Architecture ; Biomedical materials ; branching architecture ; Chemical properties ; Crosslinking ; degree of branching ; Exact sciences and technology ; hyperbranched ; linear polymers ; Nanotechnology ; Noise levels ; Organic polymers ; Phase transformations ; Physicochemistry of polymers ; polymer properties ; Properties and characterization ; Self assembly ; structure-property relations</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 2011-09, Vol.49 (18), p.1277-1286</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4770-fe1195b6512fe6d66eb7ea03c9a61a1a89b8ce4211795142fc69c52c29dd50883</citedby><cites>FETCH-LOGICAL-c4770-fe1195b6512fe6d66eb7ea03c9a61a1a89b8ce4211795142fc69c52c29dd50883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.22320$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.22320$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24484073$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xinyuan</creatorcontrib><creatorcontrib>Zhou, Yongfeng</creatorcontrib><creatorcontrib>Yan, Deyue</creatorcontrib><title>Influence of branching architecture on polymer properties</title><title>Journal of polymer science. Part B, Polymer physics</title><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><description>Hyperbranched polymers (HBPs), invented at the end of 1980s, are one important subclass of the fourth generation macromolecular architectures following the linear, branched, and crosslinking polymers. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. HBPs are composed of linear units, dendritic units, and terminal units. The degree of branching (DB), a term to describe the composition of these three structure units and thus the branching architecture of polymers, is one of the most important intrinsic parameters for HBPs. This review has summarized the effect of the DB on the physical and chemical properties of HBPs, including the rheological property, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transition, optoelectronic properties, encapsulation capability, self‐assembly behavior, biomedical applications, and so on. Such a structure and property relationship will build a bridge between the syntheses and applications of HBPs, especially in the application areas of functional materials, biomedical materials, and nanotechnology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1277–1286, 2011 The architectures, properties, and potential applications of hyperbranched polymers (HBPs) are highly dependent on their degree of branching (DB). This review summarizes the effect of the DB on the physical and chemical properties of HBPs, including rheological properties, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transitions, optoelectronic properties, encapsulation capability, self‐assembly behavior, and biomedical applications. The structure‐property relations will build a bridge between the syntheses and applications of highly branched polymers.</description><subject>applications</subject><subject>Applied sciences</subject><subject>Architecture</subject><subject>Biomedical materials</subject><subject>branching architecture</subject><subject>Chemical properties</subject><subject>Crosslinking</subject><subject>degree of branching</subject><subject>Exact sciences and technology</subject><subject>hyperbranched</subject><subject>linear polymers</subject><subject>Nanotechnology</subject><subject>Noise levels</subject><subject>Organic polymers</subject><subject>Phase transformations</subject><subject>Physicochemistry of polymers</subject><subject>polymer properties</subject><subject>Properties and characterization</subject><subject>Self assembly</subject><subject>structure-property relations</subject><issn>0887-6266</issn><issn>1099-0488</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4QuyQUJIKbbj-LEEREulirLgsbQcdwKBNAl2Iujf45DSJatZzLnHnovQKcETgjG9bOoym1CaULyHRgQrFWMm5T4aYSlFzCnnh-jI-3eMwy5VI6TmVV52UFmI6jzKnKnsW1G9RsaF2YJtOxc2VRTEmzW4qHF1A64twB-jg9yUHk62c4yeprePN3fxYjmb31wtYsuEwHEOhKg04ymhOfAV55AJMDixynBiiJEqkxYYJUSolDCaW65sSi1Vq1Uafp2M0fngDU9_duBbvS68hbI0FdSd1wRTKrlipEcvBtS62nsHuW5csTZuEyDd96P7fvRvPwE-23qNt6bM-9MLv0tQxiTDIgkcGbivooTNP0b9sFxc_7njIVP4Fr53GeM-NBeJSPXL_Uwz_jwjdEq0TH4AY1iDNA</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Zhu, Xinyuan</creator><creator>Zhou, Yongfeng</creator><creator>Yan, Deyue</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110915</creationdate><title>Influence of branching architecture on polymer properties</title><author>Zhu, Xinyuan ; Zhou, Yongfeng ; Yan, Deyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4770-fe1195b6512fe6d66eb7ea03c9a61a1a89b8ce4211795142fc69c52c29dd50883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>applications</topic><topic>Applied sciences</topic><topic>Architecture</topic><topic>Biomedical materials</topic><topic>branching architecture</topic><topic>Chemical properties</topic><topic>Crosslinking</topic><topic>degree of branching</topic><topic>Exact sciences and technology</topic><topic>hyperbranched</topic><topic>linear polymers</topic><topic>Nanotechnology</topic><topic>Noise levels</topic><topic>Organic polymers</topic><topic>Phase transformations</topic><topic>Physicochemistry of polymers</topic><topic>polymer properties</topic><topic>Properties and characterization</topic><topic>Self assembly</topic><topic>structure-property relations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xinyuan</creatorcontrib><creatorcontrib>Zhou, Yongfeng</creatorcontrib><creatorcontrib>Yan, Deyue</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xinyuan</au><au>Zhou, Yongfeng</au><au>Yan, Deyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of branching architecture on polymer properties</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><date>2011-09-15</date><risdate>2011</risdate><volume>49</volume><issue>18</issue><spage>1277</spage><epage>1286</epage><pages>1277-1286</pages><issn>0887-6266</issn><issn>1099-0488</issn><eissn>1099-0488</eissn><coden>JPLPAY</coden><abstract>Hyperbranched polymers (HBPs), invented at the end of 1980s, are one important subclass of the fourth generation macromolecular architectures following the linear, branched, and crosslinking polymers. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. HBPs are composed of linear units, dendritic units, and terminal units. The degree of branching (DB), a term to describe the composition of these three structure units and thus the branching architecture of polymers, is one of the most important intrinsic parameters for HBPs. This review has summarized the effect of the DB on the physical and chemical properties of HBPs, including the rheological property, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transition, optoelectronic properties, encapsulation capability, self‐assembly behavior, biomedical applications, and so on. Such a structure and property relationship will build a bridge between the syntheses and applications of HBPs, especially in the application areas of functional materials, biomedical materials, and nanotechnology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1277–1286, 2011 The architectures, properties, and potential applications of hyperbranched polymers (HBPs) are highly dependent on their degree of branching (DB). This review summarizes the effect of the DB on the physical and chemical properties of HBPs, including rheological properties, crystallization and melting behaviors, glass transition, thermal and hydrolytic degradations, phase characteristics, lower critical solution temperature phase transitions, optoelectronic properties, encapsulation capability, self‐assembly behavior, and biomedical applications. The structure‐property relations will build a bridge between the syntheses and applications of highly branched polymers.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/polb.22320</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-6266
ispartof Journal of polymer science. Part B, Polymer physics, 2011-09, Vol.49 (18), p.1277-1286
issn 0887-6266
1099-0488
1099-0488
language eng
recordid cdi_proquest_miscellaneous_1022869418
source Access via Wiley Online Library
subjects applications
Applied sciences
Architecture
Biomedical materials
branching architecture
Chemical properties
Crosslinking
degree of branching
Exact sciences and technology
hyperbranched
linear polymers
Nanotechnology
Noise levels
Organic polymers
Phase transformations
Physicochemistry of polymers
polymer properties
Properties and characterization
Self assembly
structure-property relations
title Influence of branching architecture on polymer properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20branching%20architecture%20on%20polymer%20properties&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Zhu,%20Xinyuan&rft.date=2011-09-15&rft.volume=49&rft.issue=18&rft.spage=1277&rft.epage=1286&rft.pages=1277-1286&rft.issn=0887-6266&rft.eissn=1099-0488&rft.coden=JPLPAY&rft_id=info:doi/10.1002/polb.22320&rft_dat=%3Cproquest_cross%3E1022869418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022869418&rft_id=info:pmid/&rfr_iscdi=true