ToF-SIMS imaging of surface self-organized fractal patterns of bacteria
Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) imaging has been shown to be a useful tool to study cell adhesion onto a surface. The purpose of this work was that of investigating by means of ToF‐SIMS imaging the influence of different salt environments on the adhesion and self organizati...
Gespeichert in:
Veröffentlicht in: | Surface and interface analysis 2011-01, Vol.43 (1-2), p.370-375 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 375 |
---|---|
container_issue | 1-2 |
container_start_page | 370 |
container_title | Surface and interface analysis |
container_volume | 43 |
creator | Tuccitto, N. Marletta, G. Carnazza, S. Grasso, L. Caratozzolo, M. Guglielmino, S. Licciardello, A. |
description | Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) imaging has been shown to be a useful tool to study cell adhesion onto a surface. The purpose of this work was that of investigating by means of ToF‐SIMS imaging the influence of different salt environments on the adhesion and self organization of Staphylococcus epidermidis ATCC 12228 onto a nonleaching surface (native silicon oxide). Chemical maps show that the different media influence the distribution of bacteria and that their different surface organization in different media is accompanied by characteristic distributions of alkali ions and organic fragments related to the bacteria. This could help in understanding the mechanisms involved in self organization of bacteria, that are thought to be related with the ability of bacteria to modify, by means of ionic fluxes through the cell membrane, the electrostatic interactions that, in turn, appear to rule their self organization in fractal patterns. Copyright © 2010 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sia.3555 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022867286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1014098506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3995-ef9c8dbb9b02b2e31809715684d0750672c48149e3034a1d28fd880baed98fbb3</originalsourceid><addsrcrecordid>eNqN0E1LwzAcx_EgCs4p-BJ6Ebx05qEPyXFOVwdzCpt4DEmajGjXzqRD56s3Y2WeBE-B8OH7hx8AlwgOEIT4xlsxIGmaHoEegiyLGUP0GPQgSnCME4xOwZn3bxBCSmjWA8WiGcfzyeM8siuxtPUyakzkN84IpSOvKxM3bilq-63LyDihWlFFa9G22tV-R2X40s6Kc3BiROX1Rff2wcv4fjF6iKdPxWQ0nMaKMJbG2jBFSymZhFhiTRCFLEdpRpMS5inMcqwSihKmCSSJQCWmpqQUSqFLRo2UpA-u9921az422rd8Zb3SVSVq3Ww8RxBjGjI0-wdFCWQ0XP2lyjXeO2342oU93DYgvpuVh1n5btZAr7qq8EpUYZNaWX_wmOSMJgQFF-_dp6309s8en0-GXbfz1rf66-CFe-dZTvKUv84Kfjsj-d2swPyZ_AC9RJLS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1014098506</pqid></control><display><type>article</type><title>ToF-SIMS imaging of surface self-organized fractal patterns of bacteria</title><source>Access via Wiley Online Library</source><creator>Tuccitto, N. ; Marletta, G. ; Carnazza, S. ; Grasso, L. ; Caratozzolo, M. ; Guglielmino, S. ; Licciardello, A.</creator><creatorcontrib>Tuccitto, N. ; Marletta, G. ; Carnazza, S. ; Grasso, L. ; Caratozzolo, M. ; Guglielmino, S. ; Licciardello, A.</creatorcontrib><description>Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) imaging has been shown to be a useful tool to study cell adhesion onto a surface. The purpose of this work was that of investigating by means of ToF‐SIMS imaging the influence of different salt environments on the adhesion and self organization of Staphylococcus epidermidis ATCC 12228 onto a nonleaching surface (native silicon oxide). Chemical maps show that the different media influence the distribution of bacteria and that their different surface organization in different media is accompanied by characteristic distributions of alkali ions and organic fragments related to the bacteria. This could help in understanding the mechanisms involved in self organization of bacteria, that are thought to be related with the ability of bacteria to modify, by means of ionic fluxes through the cell membrane, the electrostatic interactions that, in turn, appear to rule their self organization in fractal patterns. Copyright © 2010 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0142-2421</identifier><identifier>ISSN: 1096-9918</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.3555</identifier><identifier>CODEN: SIANDQ</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Alkalis ; Atomic, molecular, and ion beam impact and interactions with surfaces ; bacteria ; Cell adhesion ; Cell membranes ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electron and ion emission by liquids and solids; impact phenomena ; electrostatic interactions ; Electrostatic properties ; Exact sciences and technology ; fractal pattern ; Fractals ; imaging ; Impact phenomena (including electron spectra and sputtering) ; Ions ; Mass spectroscopy ; Physics ; Salts ; Self ; silicon oxide ; Staphylococcus epidermidis ; ToF-SIMS</subject><ispartof>Surface and interface analysis, 2011-01, Vol.43 (1-2), p.370-375</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3995-ef9c8dbb9b02b2e31809715684d0750672c48149e3034a1d28fd880baed98fbb3</citedby><cites>FETCH-LOGICAL-c3995-ef9c8dbb9b02b2e31809715684d0750672c48149e3034a1d28fd880baed98fbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsia.3555$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsia.3555$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1417,4050,4051,23930,23931,25140,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23798431$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tuccitto, N.</creatorcontrib><creatorcontrib>Marletta, G.</creatorcontrib><creatorcontrib>Carnazza, S.</creatorcontrib><creatorcontrib>Grasso, L.</creatorcontrib><creatorcontrib>Caratozzolo, M.</creatorcontrib><creatorcontrib>Guglielmino, S.</creatorcontrib><creatorcontrib>Licciardello, A.</creatorcontrib><title>ToF-SIMS imaging of surface self-organized fractal patterns of bacteria</title><title>Surface and interface analysis</title><addtitle>Surf. Interface Anal</addtitle><description>Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) imaging has been shown to be a useful tool to study cell adhesion onto a surface. The purpose of this work was that of investigating by means of ToF‐SIMS imaging the influence of different salt environments on the adhesion and self organization of Staphylococcus epidermidis ATCC 12228 onto a nonleaching surface (native silicon oxide). Chemical maps show that the different media influence the distribution of bacteria and that their different surface organization in different media is accompanied by characteristic distributions of alkali ions and organic fragments related to the bacteria. This could help in understanding the mechanisms involved in self organization of bacteria, that are thought to be related with the ability of bacteria to modify, by means of ionic fluxes through the cell membrane, the electrostatic interactions that, in turn, appear to rule their self organization in fractal patterns. Copyright © 2010 John Wiley & Sons, Ltd.</description><subject>Alkalis</subject><subject>Atomic, molecular, and ion beam impact and interactions with surfaces</subject><subject>bacteria</subject><subject>Cell adhesion</subject><subject>Cell membranes</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electron and ion emission by liquids and solids; impact phenomena</subject><subject>electrostatic interactions</subject><subject>Electrostatic properties</subject><subject>Exact sciences and technology</subject><subject>fractal pattern</subject><subject>Fractals</subject><subject>imaging</subject><subject>Impact phenomena (including electron spectra and sputtering)</subject><subject>Ions</subject><subject>Mass spectroscopy</subject><subject>Physics</subject><subject>Salts</subject><subject>Self</subject><subject>silicon oxide</subject><subject>Staphylococcus epidermidis</subject><subject>ToF-SIMS</subject><issn>0142-2421</issn><issn>1096-9918</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LwzAcx_EgCs4p-BJ6Ebx05qEPyXFOVwdzCpt4DEmajGjXzqRD56s3Y2WeBE-B8OH7hx8AlwgOEIT4xlsxIGmaHoEegiyLGUP0GPQgSnCME4xOwZn3bxBCSmjWA8WiGcfzyeM8siuxtPUyakzkN84IpSOvKxM3bilq-63LyDihWlFFa9G22tV-R2X40s6Kc3BiROX1Rff2wcv4fjF6iKdPxWQ0nMaKMJbG2jBFSymZhFhiTRCFLEdpRpMS5inMcqwSihKmCSSJQCWmpqQUSqFLRo2UpA-u9921az422rd8Zb3SVSVq3Ww8RxBjGjI0-wdFCWQ0XP2lyjXeO2342oU93DYgvpuVh1n5btZAr7qq8EpUYZNaWX_wmOSMJgQFF-_dp6309s8en0-GXbfz1rf66-CFe-dZTvKUv84Kfjsj-d2swPyZ_AC9RJLS</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Tuccitto, N.</creator><creator>Marletta, G.</creator><creator>Carnazza, S.</creator><creator>Grasso, L.</creator><creator>Caratozzolo, M.</creator><creator>Guglielmino, S.</creator><creator>Licciardello, A.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201101</creationdate><title>ToF-SIMS imaging of surface self-organized fractal patterns of bacteria</title><author>Tuccitto, N. ; Marletta, G. ; Carnazza, S. ; Grasso, L. ; Caratozzolo, M. ; Guglielmino, S. ; Licciardello, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3995-ef9c8dbb9b02b2e31809715684d0750672c48149e3034a1d28fd880baed98fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alkalis</topic><topic>Atomic, molecular, and ion beam impact and interactions with surfaces</topic><topic>bacteria</topic><topic>Cell adhesion</topic><topic>Cell membranes</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electron and ion emission by liquids and solids; impact phenomena</topic><topic>electrostatic interactions</topic><topic>Electrostatic properties</topic><topic>Exact sciences and technology</topic><topic>fractal pattern</topic><topic>Fractals</topic><topic>imaging</topic><topic>Impact phenomena (including electron spectra and sputtering)</topic><topic>Ions</topic><topic>Mass spectroscopy</topic><topic>Physics</topic><topic>Salts</topic><topic>Self</topic><topic>silicon oxide</topic><topic>Staphylococcus epidermidis</topic><topic>ToF-SIMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuccitto, N.</creatorcontrib><creatorcontrib>Marletta, G.</creatorcontrib><creatorcontrib>Carnazza, S.</creatorcontrib><creatorcontrib>Grasso, L.</creatorcontrib><creatorcontrib>Caratozzolo, M.</creatorcontrib><creatorcontrib>Guglielmino, S.</creatorcontrib><creatorcontrib>Licciardello, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuccitto, N.</au><au>Marletta, G.</au><au>Carnazza, S.</au><au>Grasso, L.</au><au>Caratozzolo, M.</au><au>Guglielmino, S.</au><au>Licciardello, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ToF-SIMS imaging of surface self-organized fractal patterns of bacteria</atitle><jtitle>Surface and interface analysis</jtitle><addtitle>Surf. Interface Anal</addtitle><date>2011-01</date><risdate>2011</risdate><volume>43</volume><issue>1-2</issue><spage>370</spage><epage>375</epage><pages>370-375</pages><issn>0142-2421</issn><issn>1096-9918</issn><eissn>1096-9918</eissn><coden>SIANDQ</coden><abstract>Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) imaging has been shown to be a useful tool to study cell adhesion onto a surface. The purpose of this work was that of investigating by means of ToF‐SIMS imaging the influence of different salt environments on the adhesion and self organization of Staphylococcus epidermidis ATCC 12228 onto a nonleaching surface (native silicon oxide). Chemical maps show that the different media influence the distribution of bacteria and that their different surface organization in different media is accompanied by characteristic distributions of alkali ions and organic fragments related to the bacteria. This could help in understanding the mechanisms involved in self organization of bacteria, that are thought to be related with the ability of bacteria to modify, by means of ionic fluxes through the cell membrane, the electrostatic interactions that, in turn, appear to rule their self organization in fractal patterns. Copyright © 2010 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/sia.3555</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-2421 |
ispartof | Surface and interface analysis, 2011-01, Vol.43 (1-2), p.370-375 |
issn | 0142-2421 1096-9918 1096-9918 |
language | eng |
recordid | cdi_proquest_miscellaneous_1022867286 |
source | Access via Wiley Online Library |
subjects | Alkalis Atomic, molecular, and ion beam impact and interactions with surfaces bacteria Cell adhesion Cell membranes Condensed matter: electronic structure, electrical, magnetic, and optical properties Electron and ion emission by liquids and solids impact phenomena electrostatic interactions Electrostatic properties Exact sciences and technology fractal pattern Fractals imaging Impact phenomena (including electron spectra and sputtering) Ions Mass spectroscopy Physics Salts Self silicon oxide Staphylococcus epidermidis ToF-SIMS |
title | ToF-SIMS imaging of surface self-organized fractal patterns of bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ToF-SIMS%20imaging%20of%20surface%20self-organized%20fractal%20patterns%20of%20bacteria&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Tuccitto,%20N.&rft.date=2011-01&rft.volume=43&rft.issue=1-2&rft.spage=370&rft.epage=375&rft.pages=370-375&rft.issn=0142-2421&rft.eissn=1096-9918&rft.coden=SIANDQ&rft_id=info:doi/10.1002/sia.3555&rft_dat=%3Cproquest_cross%3E1014098506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1014098506&rft_id=info:pmid/&rfr_iscdi=true |