ToF-SIMS imaging of surface self-organized fractal patterns of bacteria

Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) imaging has been shown to be a useful tool to study cell adhesion onto a surface. The purpose of this work was that of investigating by means of ToF‐SIMS imaging the influence of different salt environments on the adhesion and self organizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface and interface analysis 2011-01, Vol.43 (1-2), p.370-375
Hauptverfasser: Tuccitto, N., Marletta, G., Carnazza, S., Grasso, L., Caratozzolo, M., Guglielmino, S., Licciardello, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 375
container_issue 1-2
container_start_page 370
container_title Surface and interface analysis
container_volume 43
creator Tuccitto, N.
Marletta, G.
Carnazza, S.
Grasso, L.
Caratozzolo, M.
Guglielmino, S.
Licciardello, A.
description Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) imaging has been shown to be a useful tool to study cell adhesion onto a surface. The purpose of this work was that of investigating by means of ToF‐SIMS imaging the influence of different salt environments on the adhesion and self organization of Staphylococcus epidermidis ATCC 12228 onto a nonleaching surface (native silicon oxide). Chemical maps show that the different media influence the distribution of bacteria and that their different surface organization in different media is accompanied by characteristic distributions of alkali ions and organic fragments related to the bacteria. This could help in understanding the mechanisms involved in self organization of bacteria, that are thought to be related with the ability of bacteria to modify, by means of ionic fluxes through the cell membrane, the electrostatic interactions that, in turn, appear to rule their self organization in fractal patterns. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sia.3555
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022867286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1014098506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3995-ef9c8dbb9b02b2e31809715684d0750672c48149e3034a1d28fd880baed98fbb3</originalsourceid><addsrcrecordid>eNqN0E1LwzAcx_EgCs4p-BJ6Ebx05qEPyXFOVwdzCpt4DEmajGjXzqRD56s3Y2WeBE-B8OH7hx8AlwgOEIT4xlsxIGmaHoEegiyLGUP0GPQgSnCME4xOwZn3bxBCSmjWA8WiGcfzyeM8siuxtPUyakzkN84IpSOvKxM3bilq-63LyDihWlFFa9G22tV-R2X40s6Kc3BiROX1Rff2wcv4fjF6iKdPxWQ0nMaKMJbG2jBFSymZhFhiTRCFLEdpRpMS5inMcqwSihKmCSSJQCWmpqQUSqFLRo2UpA-u9921az422rd8Zb3SVSVq3Ww8RxBjGjI0-wdFCWQ0XP2lyjXeO2342oU93DYgvpuVh1n5btZAr7qq8EpUYZNaWX_wmOSMJgQFF-_dp6309s8en0-GXbfz1rf66-CFe-dZTvKUv84Kfjsj-d2swPyZ_AC9RJLS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1014098506</pqid></control><display><type>article</type><title>ToF-SIMS imaging of surface self-organized fractal patterns of bacteria</title><source>Access via Wiley Online Library</source><creator>Tuccitto, N. ; Marletta, G. ; Carnazza, S. ; Grasso, L. ; Caratozzolo, M. ; Guglielmino, S. ; Licciardello, A.</creator><creatorcontrib>Tuccitto, N. ; Marletta, G. ; Carnazza, S. ; Grasso, L. ; Caratozzolo, M. ; Guglielmino, S. ; Licciardello, A.</creatorcontrib><description>Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) imaging has been shown to be a useful tool to study cell adhesion onto a surface. The purpose of this work was that of investigating by means of ToF‐SIMS imaging the influence of different salt environments on the adhesion and self organization of Staphylococcus epidermidis ATCC 12228 onto a nonleaching surface (native silicon oxide). Chemical maps show that the different media influence the distribution of bacteria and that their different surface organization in different media is accompanied by characteristic distributions of alkali ions and organic fragments related to the bacteria. This could help in understanding the mechanisms involved in self organization of bacteria, that are thought to be related with the ability of bacteria to modify, by means of ionic fluxes through the cell membrane, the electrostatic interactions that, in turn, appear to rule their self organization in fractal patterns. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0142-2421</identifier><identifier>ISSN: 1096-9918</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.3555</identifier><identifier>CODEN: SIANDQ</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Alkalis ; Atomic, molecular, and ion beam impact and interactions with surfaces ; bacteria ; Cell adhesion ; Cell membranes ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electron and ion emission by liquids and solids; impact phenomena ; electrostatic interactions ; Electrostatic properties ; Exact sciences and technology ; fractal pattern ; Fractals ; imaging ; Impact phenomena (including electron spectra and sputtering) ; Ions ; Mass spectroscopy ; Physics ; Salts ; Self ; silicon oxide ; Staphylococcus epidermidis ; ToF-SIMS</subject><ispartof>Surface and interface analysis, 2011-01, Vol.43 (1-2), p.370-375</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3995-ef9c8dbb9b02b2e31809715684d0750672c48149e3034a1d28fd880baed98fbb3</citedby><cites>FETCH-LOGICAL-c3995-ef9c8dbb9b02b2e31809715684d0750672c48149e3034a1d28fd880baed98fbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsia.3555$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsia.3555$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1417,4050,4051,23930,23931,25140,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23798431$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tuccitto, N.</creatorcontrib><creatorcontrib>Marletta, G.</creatorcontrib><creatorcontrib>Carnazza, S.</creatorcontrib><creatorcontrib>Grasso, L.</creatorcontrib><creatorcontrib>Caratozzolo, M.</creatorcontrib><creatorcontrib>Guglielmino, S.</creatorcontrib><creatorcontrib>Licciardello, A.</creatorcontrib><title>ToF-SIMS imaging of surface self-organized fractal patterns of bacteria</title><title>Surface and interface analysis</title><addtitle>Surf. Interface Anal</addtitle><description>Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) imaging has been shown to be a useful tool to study cell adhesion onto a surface. The purpose of this work was that of investigating by means of ToF‐SIMS imaging the influence of different salt environments on the adhesion and self organization of Staphylococcus epidermidis ATCC 12228 onto a nonleaching surface (native silicon oxide). Chemical maps show that the different media influence the distribution of bacteria and that their different surface organization in different media is accompanied by characteristic distributions of alkali ions and organic fragments related to the bacteria. This could help in understanding the mechanisms involved in self organization of bacteria, that are thought to be related with the ability of bacteria to modify, by means of ionic fluxes through the cell membrane, the electrostatic interactions that, in turn, appear to rule their self organization in fractal patterns. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Alkalis</subject><subject>Atomic, molecular, and ion beam impact and interactions with surfaces</subject><subject>bacteria</subject><subject>Cell adhesion</subject><subject>Cell membranes</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electron and ion emission by liquids and solids; impact phenomena</subject><subject>electrostatic interactions</subject><subject>Electrostatic properties</subject><subject>Exact sciences and technology</subject><subject>fractal pattern</subject><subject>Fractals</subject><subject>imaging</subject><subject>Impact phenomena (including electron spectra and sputtering)</subject><subject>Ions</subject><subject>Mass spectroscopy</subject><subject>Physics</subject><subject>Salts</subject><subject>Self</subject><subject>silicon oxide</subject><subject>Staphylococcus epidermidis</subject><subject>ToF-SIMS</subject><issn>0142-2421</issn><issn>1096-9918</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LwzAcx_EgCs4p-BJ6Ebx05qEPyXFOVwdzCpt4DEmajGjXzqRD56s3Y2WeBE-B8OH7hx8AlwgOEIT4xlsxIGmaHoEegiyLGUP0GPQgSnCME4xOwZn3bxBCSmjWA8WiGcfzyeM8siuxtPUyakzkN84IpSOvKxM3bilq-63LyDihWlFFa9G22tV-R2X40s6Kc3BiROX1Rff2wcv4fjF6iKdPxWQ0nMaKMJbG2jBFSymZhFhiTRCFLEdpRpMS5inMcqwSihKmCSSJQCWmpqQUSqFLRo2UpA-u9921az422rd8Zb3SVSVq3Ww8RxBjGjI0-wdFCWQ0XP2lyjXeO2342oU93DYgvpuVh1n5btZAr7qq8EpUYZNaWX_wmOSMJgQFF-_dp6309s8en0-GXbfz1rf66-CFe-dZTvKUv84Kfjsj-d2swPyZ_AC9RJLS</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Tuccitto, N.</creator><creator>Marletta, G.</creator><creator>Carnazza, S.</creator><creator>Grasso, L.</creator><creator>Caratozzolo, M.</creator><creator>Guglielmino, S.</creator><creator>Licciardello, A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201101</creationdate><title>ToF-SIMS imaging of surface self-organized fractal patterns of bacteria</title><author>Tuccitto, N. ; Marletta, G. ; Carnazza, S. ; Grasso, L. ; Caratozzolo, M. ; Guglielmino, S. ; Licciardello, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3995-ef9c8dbb9b02b2e31809715684d0750672c48149e3034a1d28fd880baed98fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alkalis</topic><topic>Atomic, molecular, and ion beam impact and interactions with surfaces</topic><topic>bacteria</topic><topic>Cell adhesion</topic><topic>Cell membranes</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electron and ion emission by liquids and solids; impact phenomena</topic><topic>electrostatic interactions</topic><topic>Electrostatic properties</topic><topic>Exact sciences and technology</topic><topic>fractal pattern</topic><topic>Fractals</topic><topic>imaging</topic><topic>Impact phenomena (including electron spectra and sputtering)</topic><topic>Ions</topic><topic>Mass spectroscopy</topic><topic>Physics</topic><topic>Salts</topic><topic>Self</topic><topic>silicon oxide</topic><topic>Staphylococcus epidermidis</topic><topic>ToF-SIMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuccitto, N.</creatorcontrib><creatorcontrib>Marletta, G.</creatorcontrib><creatorcontrib>Carnazza, S.</creatorcontrib><creatorcontrib>Grasso, L.</creatorcontrib><creatorcontrib>Caratozzolo, M.</creatorcontrib><creatorcontrib>Guglielmino, S.</creatorcontrib><creatorcontrib>Licciardello, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuccitto, N.</au><au>Marletta, G.</au><au>Carnazza, S.</au><au>Grasso, L.</au><au>Caratozzolo, M.</au><au>Guglielmino, S.</au><au>Licciardello, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ToF-SIMS imaging of surface self-organized fractal patterns of bacteria</atitle><jtitle>Surface and interface analysis</jtitle><addtitle>Surf. Interface Anal</addtitle><date>2011-01</date><risdate>2011</risdate><volume>43</volume><issue>1-2</issue><spage>370</spage><epage>375</epage><pages>370-375</pages><issn>0142-2421</issn><issn>1096-9918</issn><eissn>1096-9918</eissn><coden>SIANDQ</coden><abstract>Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) imaging has been shown to be a useful tool to study cell adhesion onto a surface. The purpose of this work was that of investigating by means of ToF‐SIMS imaging the influence of different salt environments on the adhesion and self organization of Staphylococcus epidermidis ATCC 12228 onto a nonleaching surface (native silicon oxide). Chemical maps show that the different media influence the distribution of bacteria and that their different surface organization in different media is accompanied by characteristic distributions of alkali ions and organic fragments related to the bacteria. This could help in understanding the mechanisms involved in self organization of bacteria, that are thought to be related with the ability of bacteria to modify, by means of ionic fluxes through the cell membrane, the electrostatic interactions that, in turn, appear to rule their self organization in fractal patterns. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/sia.3555</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-2421
ispartof Surface and interface analysis, 2011-01, Vol.43 (1-2), p.370-375
issn 0142-2421
1096-9918
1096-9918
language eng
recordid cdi_proquest_miscellaneous_1022867286
source Access via Wiley Online Library
subjects Alkalis
Atomic, molecular, and ion beam impact and interactions with surfaces
bacteria
Cell adhesion
Cell membranes
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electron and ion emission by liquids and solids
impact phenomena
electrostatic interactions
Electrostatic properties
Exact sciences and technology
fractal pattern
Fractals
imaging
Impact phenomena (including electron spectra and sputtering)
Ions
Mass spectroscopy
Physics
Salts
Self
silicon oxide
Staphylococcus epidermidis
ToF-SIMS
title ToF-SIMS imaging of surface self-organized fractal patterns of bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ToF-SIMS%20imaging%20of%20surface%20self-organized%20fractal%20patterns%20of%20bacteria&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Tuccitto,%20N.&rft.date=2011-01&rft.volume=43&rft.issue=1-2&rft.spage=370&rft.epage=375&rft.pages=370-375&rft.issn=0142-2421&rft.eissn=1096-9918&rft.coden=SIANDQ&rft_id=info:doi/10.1002/sia.3555&rft_dat=%3Cproquest_cross%3E1014098506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1014098506&rft_id=info:pmid/&rfr_iscdi=true