Homogenization of viscoelastic composites with fibres of diamond-shaped cross-section

The present paper provides details on the application of asymptotic homogenization techniques to the analysis of viscoelastic composite materials with fibres of diamond-shaped cross-section. The Correspondence principle allows transforming the governing boundary value problems to quasistatic ones. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2012-05, Vol.223 (5), p.1093-1100
Hauptverfasser: Andrianov, Igor V., Danishevs’kyy, Vladyslav V., Kholod, Elena G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1100
container_issue 5
container_start_page 1093
container_title Acta mechanica
container_volume 223
creator Andrianov, Igor V.
Danishevs’kyy, Vladyslav V.
Kholod, Elena G.
description The present paper provides details on the application of asymptotic homogenization techniques to the analysis of viscoelastic composite materials with fibres of diamond-shaped cross-section. The Correspondence principle allows transforming the governing boundary value problems to quasistatic ones. Then, we apply the homogenization approach. For solving the cell problem for small volume fractions, the boundary shape perturbation procedure and the composite cylinder assemblage model are used. For a volume fraction equal to 1/2, we use the Dykhne–Keller–Mendelson formula. Matching of limit solutions by two-point Padé approximants gives a formula for the effective properties valid for any volume fraction from the interval [0, 0.5].
doi_str_mv 10.1007/s00707-011-0608-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022866826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355558374</galeid><sourcerecordid>A355558374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d4af5e4e2512e0c25ba14e33f7c360b20d7980c55ed53919329db94c395fce393</originalsourceid><addsrcrecordid>eNp1kc1qGzEUhUVpIa6bB8huIJts5FxJI2m0DCFNAoZs4vUga65shZmRK41b2qePnMkiBCqB_vjO4YhDyAWDFQPQ17ksoCkwRkFBQ9UXsmCKGaqM0F_JAgAYlUbDGfme80u5cV2zBdk8xCHucAz_7BTiWEVf_Q7ZRextnoKrXBwOMYcJc_UnTPvKh20q54J1wQ5x7Gje2wN2lUsxZ5rRnWx-kG_e9hnP3_cl2fy8e759oOun-8fbmzV1omkm2tXWS6yRS8YRHJdby2oUwmsnFGw5dNo04KTETgrDjOCm25raCSO9Q2HEklzNvocUfx0xT-1QwmPf2xHjMbcMOG-Uargq6OUn9CUe01jSFQoaA0xJXqjVTO1sj20YfZySdWV2OAQXR_ShvN8IWUYjdF0EbBa8_T-hbw8pDDb9La4nY93OzbSlmfbUTHuKwmdNLuy4w_Qxyv9Er0BCkGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1008901652</pqid></control><display><type>article</type><title>Homogenization of viscoelastic composites with fibres of diamond-shaped cross-section</title><source>SpringerLink Journals - AutoHoldings</source><creator>Andrianov, Igor V. ; Danishevs’kyy, Vladyslav V. ; Kholod, Elena G.</creator><creatorcontrib>Andrianov, Igor V. ; Danishevs’kyy, Vladyslav V. ; Kholod, Elena G.</creatorcontrib><description>The present paper provides details on the application of asymptotic homogenization techniques to the analysis of viscoelastic composite materials with fibres of diamond-shaped cross-section. The Correspondence principle allows transforming the governing boundary value problems to quasistatic ones. Then, we apply the homogenization approach. For solving the cell problem for small volume fractions, the boundary shape perturbation procedure and the composite cylinder assemblage model are used. For a volume fraction equal to 1/2, we use the Dykhne–Keller–Mendelson formula. Matching of limit solutions by two-point Padé approximants gives a formula for the effective properties valid for any volume fraction from the interval [0, 0.5].</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-011-0608-6</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analysis ; Asymptotic methods ; Boundary value problems ; Classical and Continuum Physics ; Composite materials ; Composite materials industry ; Control ; Cylinders ; Diamond crystals ; Diamonds ; Dynamical Systems ; Engineering ; Engineering Thermodynamics ; Fibres ; Heat and Mass Transfer ; Homogenization ; Homogenizing ; Materials science ; Mathematical models ; Solid Mechanics ; Theoretical and Applied Mechanics ; Vibration ; Viscoelasticity ; Volume fraction</subject><ispartof>Acta mechanica, 2012-05, Vol.223 (5), p.1093-1100</ispartof><rights>Springer-Verlag 2012</rights><rights>COPYRIGHT 2012 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-d4af5e4e2512e0c25ba14e33f7c360b20d7980c55ed53919329db94c395fce393</citedby><cites>FETCH-LOGICAL-c388t-d4af5e4e2512e0c25ba14e33f7c360b20d7980c55ed53919329db94c395fce393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-011-0608-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-011-0608-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Andrianov, Igor V.</creatorcontrib><creatorcontrib>Danishevs’kyy, Vladyslav V.</creatorcontrib><creatorcontrib>Kholod, Elena G.</creatorcontrib><title>Homogenization of viscoelastic composites with fibres of diamond-shaped cross-section</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>The present paper provides details on the application of asymptotic homogenization techniques to the analysis of viscoelastic composite materials with fibres of diamond-shaped cross-section. The Correspondence principle allows transforming the governing boundary value problems to quasistatic ones. Then, we apply the homogenization approach. For solving the cell problem for small volume fractions, the boundary shape perturbation procedure and the composite cylinder assemblage model are used. For a volume fraction equal to 1/2, we use the Dykhne–Keller–Mendelson formula. Matching of limit solutions by two-point Padé approximants gives a formula for the effective properties valid for any volume fraction from the interval [0, 0.5].</description><subject>Analysis</subject><subject>Asymptotic methods</subject><subject>Boundary value problems</subject><subject>Classical and Continuum Physics</subject><subject>Composite materials</subject><subject>Composite materials industry</subject><subject>Control</subject><subject>Cylinders</subject><subject>Diamond crystals</subject><subject>Diamonds</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Fibres</subject><subject>Heat and Mass Transfer</subject><subject>Homogenization</subject><subject>Homogenizing</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><subject>Viscoelasticity</subject><subject>Volume fraction</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1qGzEUhUVpIa6bB8huIJts5FxJI2m0DCFNAoZs4vUga65shZmRK41b2qePnMkiBCqB_vjO4YhDyAWDFQPQ17ksoCkwRkFBQ9UXsmCKGaqM0F_JAgAYlUbDGfme80u5cV2zBdk8xCHucAz_7BTiWEVf_Q7ZRextnoKrXBwOMYcJc_UnTPvKh20q54J1wQ5x7Gje2wN2lUsxZ5rRnWx-kG_e9hnP3_cl2fy8e759oOun-8fbmzV1omkm2tXWS6yRS8YRHJdby2oUwmsnFGw5dNo04KTETgrDjOCm25raCSO9Q2HEklzNvocUfx0xT-1QwmPf2xHjMbcMOG-Uargq6OUn9CUe01jSFQoaA0xJXqjVTO1sj20YfZySdWV2OAQXR_ShvN8IWUYjdF0EbBa8_T-hbw8pDDb9La4nY93OzbSlmfbUTHuKwmdNLuy4w_Qxyv9Er0BCkGg</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Andrianov, Igor V.</creator><creator>Danishevs’kyy, Vladyslav V.</creator><creator>Kholod, Elena G.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20120501</creationdate><title>Homogenization of viscoelastic composites with fibres of diamond-shaped cross-section</title><author>Andrianov, Igor V. ; Danishevs’kyy, Vladyslav V. ; Kholod, Elena G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d4af5e4e2512e0c25ba14e33f7c360b20d7980c55ed53919329db94c395fce393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Asymptotic methods</topic><topic>Boundary value problems</topic><topic>Classical and Continuum Physics</topic><topic>Composite materials</topic><topic>Composite materials industry</topic><topic>Control</topic><topic>Cylinders</topic><topic>Diamond crystals</topic><topic>Diamonds</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Fibres</topic><topic>Heat and Mass Transfer</topic><topic>Homogenization</topic><topic>Homogenizing</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><topic>Viscoelasticity</topic><topic>Volume fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrianov, Igor V.</creatorcontrib><creatorcontrib>Danishevs’kyy, Vladyslav V.</creatorcontrib><creatorcontrib>Kholod, Elena G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrianov, Igor V.</au><au>Danishevs’kyy, Vladyslav V.</au><au>Kholod, Elena G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogenization of viscoelastic composites with fibres of diamond-shaped cross-section</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2012-05-01</date><risdate>2012</risdate><volume>223</volume><issue>5</issue><spage>1093</spage><epage>1100</epage><pages>1093-1100</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>The present paper provides details on the application of asymptotic homogenization techniques to the analysis of viscoelastic composite materials with fibres of diamond-shaped cross-section. The Correspondence principle allows transforming the governing boundary value problems to quasistatic ones. Then, we apply the homogenization approach. For solving the cell problem for small volume fractions, the boundary shape perturbation procedure and the composite cylinder assemblage model are used. For a volume fraction equal to 1/2, we use the Dykhne–Keller–Mendelson formula. Matching of limit solutions by two-point Padé approximants gives a formula for the effective properties valid for any volume fraction from the interval [0, 0.5].</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-011-0608-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2012-05, Vol.223 (5), p.1093-1100
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_miscellaneous_1022866826
source SpringerLink Journals - AutoHoldings
subjects Analysis
Asymptotic methods
Boundary value problems
Classical and Continuum Physics
Composite materials
Composite materials industry
Control
Cylinders
Diamond crystals
Diamonds
Dynamical Systems
Engineering
Engineering Thermodynamics
Fibres
Heat and Mass Transfer
Homogenization
Homogenizing
Materials science
Mathematical models
Solid Mechanics
Theoretical and Applied Mechanics
Vibration
Viscoelasticity
Volume fraction
title Homogenization of viscoelastic composites with fibres of diamond-shaped cross-section
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogenization%20of%20viscoelastic%20composites%20with%20fibres%20of%20diamond-shaped%20cross-section&rft.jtitle=Acta%20mechanica&rft.au=Andrianov,%20Igor%20V.&rft.date=2012-05-01&rft.volume=223&rft.issue=5&rft.spage=1093&rft.epage=1100&rft.pages=1093-1100&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/s00707-011-0608-6&rft_dat=%3Cgale_proqu%3EA355558374%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1008901652&rft_id=info:pmid/&rft_galeid=A355558374&rfr_iscdi=true