Isoconversional and thermal methods of kinetic analysis of 2,4-dihydroxybenzophenone copolymer resin

A copolymer (2,4‐DHBPOF) synthesized by the condensation of 2,4‐dihydroxybenzophenone and oxamide with formaldehyde in the presence of acid catalyst with varying the molar proportions of the reacting monomer. Composition of the copolymer has been determined by elemental analysis. The copolymer has b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2011-11, Vol.122 (4), p.2181-2188
Hauptverfasser: Gurnule, Wasudeo B., Butoliya, S. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2188
container_issue 4
container_start_page 2181
container_title Journal of applied polymer science
container_volume 122
creator Gurnule, Wasudeo B.
Butoliya, S. S.
description A copolymer (2,4‐DHBPOF) synthesized by the condensation of 2,4‐dihydroxybenzophenone and oxamide with formaldehyde in the presence of acid catalyst with varying the molar proportions of the reacting monomer. Composition of the copolymer has been determined by elemental analysis. The copolymer has been characterized by UV–visible, FTIR, and 1H NMR spectroscopy. The morphology of synthesized copolymer was studied by scanning electron microscopy (SEM). The activation energy (Ea) and thermal stability calculated by using Sharp‐Wentworth, Freeman–Carroll, and Freidman's method. Thermogravimetric analysis (TGA) data were analyzed to estimate the characteristic thermal parameters. Freeman–Carroll and Sharp Wentworth methods have been used to calculate activation energy and thermal stability. The activation energy (Ea) calculated by using the Sharp‐Wentworth has been found to be in good agreement with that calculated by Freeman–Carroll method. Thermodynamic parameters such as free energy change (ΔF), entropy change (ΔS), apparent entropy change (S*), and frequency factor (Z) have also been evaluated based on the data of Freeman–Carroll method. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
doi_str_mv 10.1002/app.34309
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022861009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3277600861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3989-1c6cfb8fda67b70ec57a81818a81603df657f7b351e840fee5f56752d3c87d53</originalsourceid><addsrcrecordid>eNp1kF1rFDEUhgdRcG298B8MiKDQaZPJ51yWrf1i0UILXoZscsKmnUnGZFY7_nrTbtsLQQJJyHneB_JW1QeMDjFC7ZEex0NCCepeVQuMOtFQ3srX1aLMcCO7jr2t3uV8ixDGDPFFZS9yNDH8gpR9DLqvdbD1tIE0lPsA0ybaXEdX3_kAkzdlrPs5-8e39oA21m9mm-L9vIbwJ44bCDFAbeIY-3mAVCfIPuxXb5zuM7x_Oveqm9OvN8vzZvX97GJ5vGoM6WTXYMONW0tnNRdrgcAwoSUuq-wcEes4E06sCcMgKXIAzDEuWGuJkcIysld93mnHFH9uIU9q8NlA3-sAcZsVRm0reampK-jHf9DbuE3lb4VimEvJJOWF-rKjTIo5J3BqTH7QaS4q9VC3KnWrx7oL--nJqLPRvUs6GJ9fAi2lnFH6wB3tuN--h_n_QnV8dfVsbnYJnye4f0nodKe4IIKpH9_O1Mlle726Jq1akr8-7Z4D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516885846</pqid></control><display><type>article</type><title>Isoconversional and thermal methods of kinetic analysis of 2,4-dihydroxybenzophenone copolymer resin</title><source>Access via Wiley Online Library</source><creator>Gurnule, Wasudeo B. ; Butoliya, S. S.</creator><creatorcontrib>Gurnule, Wasudeo B. ; Butoliya, S. S.</creatorcontrib><description>A copolymer (2,4‐DHBPOF) synthesized by the condensation of 2,4‐dihydroxybenzophenone and oxamide with formaldehyde in the presence of acid catalyst with varying the molar proportions of the reacting monomer. Composition of the copolymer has been determined by elemental analysis. The copolymer has been characterized by UV–visible, FTIR, and 1H NMR spectroscopy. The morphology of synthesized copolymer was studied by scanning electron microscopy (SEM). The activation energy (Ea) and thermal stability calculated by using Sharp‐Wentworth, Freeman–Carroll, and Freidman's method. Thermogravimetric analysis (TGA) data were analyzed to estimate the characteristic thermal parameters. Freeman–Carroll and Sharp Wentworth methods have been used to calculate activation energy and thermal stability. The activation energy (Ea) calculated by using the Sharp‐Wentworth has been found to be in good agreement with that calculated by Freeman–Carroll method. Thermodynamic parameters such as free energy change (ΔF), entropy change (ΔS), apparent entropy change (S*), and frequency factor (Z) have also been evaluated based on the data of Freeman–Carroll method. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.34309</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Activation energy ; Applied sciences ; copolymer ; Copolymers ; degradation ; Entropy ; Exact sciences and technology ; kinetics ; Materials science ; Mathematical analysis ; Monomers ; Organic polymers ; Physicochemistry of polymers ; Polycondensation ; Polymers ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; Scanning electron microscopy ; Thermal stability ; Thermogravimetric analysis</subject><ispartof>Journal of applied polymer science, 2011-11, Vol.122 (4), p.2181-2188</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3989-1c6cfb8fda67b70ec57a81818a81603df657f7b351e840fee5f56752d3c87d53</citedby><cites>FETCH-LOGICAL-c3989-1c6cfb8fda67b70ec57a81818a81603df657f7b351e840fee5f56752d3c87d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.34309$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.34309$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24465449$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gurnule, Wasudeo B.</creatorcontrib><creatorcontrib>Butoliya, S. S.</creatorcontrib><title>Isoconversional and thermal methods of kinetic analysis of 2,4-dihydroxybenzophenone copolymer resin</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>A copolymer (2,4‐DHBPOF) synthesized by the condensation of 2,4‐dihydroxybenzophenone and oxamide with formaldehyde in the presence of acid catalyst with varying the molar proportions of the reacting monomer. Composition of the copolymer has been determined by elemental analysis. The copolymer has been characterized by UV–visible, FTIR, and 1H NMR spectroscopy. The morphology of synthesized copolymer was studied by scanning electron microscopy (SEM). The activation energy (Ea) and thermal stability calculated by using Sharp‐Wentworth, Freeman–Carroll, and Freidman's method. Thermogravimetric analysis (TGA) data were analyzed to estimate the characteristic thermal parameters. Freeman–Carroll and Sharp Wentworth methods have been used to calculate activation energy and thermal stability. The activation energy (Ea) calculated by using the Sharp‐Wentworth has been found to be in good agreement with that calculated by Freeman–Carroll method. Thermodynamic parameters such as free energy change (ΔF), entropy change (ΔS), apparent entropy change (S*), and frequency factor (Z) have also been evaluated based on the data of Freeman–Carroll method. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</description><subject>Activation energy</subject><subject>Applied sciences</subject><subject>copolymer</subject><subject>Copolymers</subject><subject>degradation</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>kinetics</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Monomers</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polycondensation</subject><subject>Polymers</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>Scanning electron microscopy</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kF1rFDEUhgdRcG298B8MiKDQaZPJ51yWrf1i0UILXoZscsKmnUnGZFY7_nrTbtsLQQJJyHneB_JW1QeMDjFC7ZEex0NCCepeVQuMOtFQ3srX1aLMcCO7jr2t3uV8ixDGDPFFZS9yNDH8gpR9DLqvdbD1tIE0lPsA0ybaXEdX3_kAkzdlrPs5-8e39oA21m9mm-L9vIbwJ44bCDFAbeIY-3mAVCfIPuxXb5zuM7x_Oveqm9OvN8vzZvX97GJ5vGoM6WTXYMONW0tnNRdrgcAwoSUuq-wcEes4E06sCcMgKXIAzDEuWGuJkcIysld93mnHFH9uIU9q8NlA3-sAcZsVRm0reampK-jHf9DbuE3lb4VimEvJJOWF-rKjTIo5J3BqTH7QaS4q9VC3KnWrx7oL--nJqLPRvUs6GJ9fAi2lnFH6wB3tuN--h_n_QnV8dfVsbnYJnye4f0nodKe4IIKpH9_O1Mlle726Jq1akr8-7Z4D</recordid><startdate>20111115</startdate><enddate>20111115</enddate><creator>Gurnule, Wasudeo B.</creator><creator>Butoliya, S. S.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111115</creationdate><title>Isoconversional and thermal methods of kinetic analysis of 2,4-dihydroxybenzophenone copolymer resin</title><author>Gurnule, Wasudeo B. ; Butoliya, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3989-1c6cfb8fda67b70ec57a81818a81603df657f7b351e840fee5f56752d3c87d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activation energy</topic><topic>Applied sciences</topic><topic>copolymer</topic><topic>Copolymers</topic><topic>degradation</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>kinetics</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Monomers</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polycondensation</topic><topic>Polymers</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>Scanning electron microscopy</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurnule, Wasudeo B.</creatorcontrib><creatorcontrib>Butoliya, S. S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurnule, Wasudeo B.</au><au>Butoliya, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isoconversional and thermal methods of kinetic analysis of 2,4-dihydroxybenzophenone copolymer resin</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2011-11-15</date><risdate>2011</risdate><volume>122</volume><issue>4</issue><spage>2181</spage><epage>2188</epage><pages>2181-2188</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>A copolymer (2,4‐DHBPOF) synthesized by the condensation of 2,4‐dihydroxybenzophenone and oxamide with formaldehyde in the presence of acid catalyst with varying the molar proportions of the reacting monomer. Composition of the copolymer has been determined by elemental analysis. The copolymer has been characterized by UV–visible, FTIR, and 1H NMR spectroscopy. The morphology of synthesized copolymer was studied by scanning electron microscopy (SEM). The activation energy (Ea) and thermal stability calculated by using Sharp‐Wentworth, Freeman–Carroll, and Freidman's method. Thermogravimetric analysis (TGA) data were analyzed to estimate the characteristic thermal parameters. Freeman–Carroll and Sharp Wentworth methods have been used to calculate activation energy and thermal stability. The activation energy (Ea) calculated by using the Sharp‐Wentworth has been found to be in good agreement with that calculated by Freeman–Carroll method. Thermodynamic parameters such as free energy change (ΔF), entropy change (ΔS), apparent entropy change (S*), and frequency factor (Z) have also been evaluated based on the data of Freeman–Carroll method. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.34309</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2011-11, Vol.122 (4), p.2181-2188
issn 0021-8995
1097-4628
1097-4628
language eng
recordid cdi_proquest_miscellaneous_1022861009
source Access via Wiley Online Library
subjects Activation energy
Applied sciences
copolymer
Copolymers
degradation
Entropy
Exact sciences and technology
kinetics
Materials science
Mathematical analysis
Monomers
Organic polymers
Physicochemistry of polymers
Polycondensation
Polymers
Preparation, kinetics, thermodynamics, mechanism and catalysts
Scanning electron microscopy
Thermal stability
Thermogravimetric analysis
title Isoconversional and thermal methods of kinetic analysis of 2,4-dihydroxybenzophenone copolymer resin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isoconversional%20and%20thermal%20methods%20of%20kinetic%20analysis%20of%202,4-dihydroxybenzophenone%20copolymer%20resin&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Gurnule,%20Wasudeo%20B.&rft.date=2011-11-15&rft.volume=122&rft.issue=4&rft.spage=2181&rft.epage=2188&rft.pages=2181-2188&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.34309&rft_dat=%3Cproquest_cross%3E3277600861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1516885846&rft_id=info:pmid/&rfr_iscdi=true