A splitting theorem for the weighted measure

Let M be an n -dimensional complete noncompact Riemannian manifold, h be a smooth function on M and d μ  =  e h d V be the weighted measure. In this article, we prove that when the spectrum of the weighted Laplacian has a positive lower bound λ 1 ( M ) > 0 and the m ( m  >  n )-dimensional Bak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2012-06, Vol.42 (1), p.79-89
1. Verfasser: Wang, Lin Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M be an n -dimensional complete noncompact Riemannian manifold, h be a smooth function on M and d μ  =  e h d V be the weighted measure. In this article, we prove that when the spectrum of the weighted Laplacian has a positive lower bound λ 1 ( M ) > 0 and the m ( m  >  n )-dimensional Bakry-Émery curvature is bounded from below by , then M splits isometrically as R  × N whenever it has two ends with infinite weighted volume, here N is an ( n − 1)-dimensional compact manifold.
ISSN:0232-704X
1572-9060
DOI:10.1007/s10455-011-9302-0