A splitting theorem for the weighted measure
Let M be an n -dimensional complete noncompact Riemannian manifold, h be a smooth function on M and d μ = e h d V be the weighted measure. In this article, we prove that when the spectrum of the weighted Laplacian has a positive lower bound λ 1 ( M ) > 0 and the m ( m > n )-dimensional Bak...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2012-06, Vol.42 (1), p.79-89 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
M
be an
n
-dimensional complete noncompact Riemannian manifold,
h
be a smooth function on
M
and d
μ
=
e
h
d
V
be the weighted measure. In this article, we prove that when the spectrum of the weighted Laplacian
has a positive lower bound λ
1
(
M
) > 0 and the
m
(
m
>
n
)-dimensional Bakry-Émery curvature is bounded from below by
, then
M
splits isometrically as
R
×
N
whenever it has two ends with infinite weighted volume, here
N
is an (
n
− 1)-dimensional compact manifold. |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-011-9302-0 |