Redox Mechanisms of Nodularin and Chemically Degraded Nodularin
The electrochemical behaviour of Nodularin (NOD), a hepatotoxic cyclic pentapeptide, was studied at a glassy carbon electrode. NOD electrochemical oxidation is an irreversible, pH‐independent process, involving the transfer of one electron. Upon incubation in different pH electrolytes, chemical degr...
Gespeichert in:
Veröffentlicht in: | Electroanalysis (New York, N.Y.) N.Y.), 2011-10, Vol.23 (10), p.2310-2319 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The electrochemical behaviour of Nodularin (NOD), a hepatotoxic cyclic pentapeptide, was studied at a glassy carbon electrode. NOD electrochemical oxidation is an irreversible, pH‐independent process, involving the transfer of one electron. Upon incubation in different pH electrolytes, chemical degradation of NOD was electrochemically detected by the appearance of a new oxidation peak. The chemically degraded NOD (cdNOD), undergoes an irreversible, pH‐dependent oxidation, and its redox products are reversibly oxidised. The charge transfer properties of cdNOD as well as of its redox metabolites were investigated. Mechanisms for NOD oxidation, NOD chemical degradation and oxidation of cdNOD and its metabolites were proposed. |
---|---|
ISSN: | 1040-0397 1521-4109 |
DOI: | 10.1002/elan.201100246 |