Excess equimolar radius of liquid drops

The curvature dependence of the surface tension is related to the excess equimolar radius of liquid drops, i.e., the deviation of the equimolar radius from the radius defined by the macroscopic capillarity approximation. Based on the Tolman [J. Chem. Phys. 17, 333 (1949)] approach and its interpreta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-03, Vol.85 (3 Pt 1), p.031605-031605, Article 031605
Hauptverfasser: Horsch, Martin, Hasse, Hans, Shchekin, Alexander K, Agarwal, Animesh, Eckelsbach, Stefan, Vrabec, Jadran, Müller, Erich A, Jackson, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 031605
container_issue 3 Pt 1
container_start_page 031605
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 85
creator Horsch, Martin
Hasse, Hans
Shchekin, Alexander K
Agarwal, Animesh
Eckelsbach, Stefan
Vrabec, Jadran
Müller, Erich A
Jackson, George
description The curvature dependence of the surface tension is related to the excess equimolar radius of liquid drops, i.e., the deviation of the equimolar radius from the radius defined by the macroscopic capillarity approximation. Based on the Tolman [J. Chem. Phys. 17, 333 (1949)] approach and its interpretation by Nijmeijer et al. [J. Chem. Phys. 96, 565 (1991)], the surface tension of spherical interfaces is analyzed in terms of the pressure difference due to curvature. In the present study, the excess equimolar radius, which can be obtained directly from the density profile, is used instead of the Tolman length. Liquid drops of the truncated and shifted Lennard-Jones fluid are investigated by molecular dynamics simulation in the canonical ensemble, with equimolar radii ranging from 4 to 33 times the Lennard-Jones size parameter σ. In these simulations, the magnitude of the excess equimolar radius is shown to be smaller than σ/2. This suggests that the surface tension of liquid drops at the nanometer length scale is much closer to that of the planar vapor-liquid interface than reported in studies based on the mechanical route.
doi_str_mv 10.1103/PhysRevE.85.031605
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022558526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022558526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-4c8cc68b4c0b0dda11adc86a9beadb6e6fd4c647e2f03bbacae3a7d5a900e5603</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRrFb_gAfJTS-ps7vZzfYopX5AQRE9L_sxwUhi2p1G7L83pa2nGYbnfRkexq44TDgHeff6uaE3_JlPjJqA5BrUETvjSkEuZKmPt7uc5rJUasTOib4ApJCmOGUjIZQpOegzdjP_DUiU4aqv265xKUsu1j1lXZU19XCMWUzdki7YSeUawsv9HLOPh_n77ClfvDw-z-4XeZBKrPMimBC08UUADzE6zl0MRrupRxe9Rl3FIuiiRFGB9N4Fh9KVUbkpACoNcsxud73L1K16pLVtawrYNO4bu54sh-F3ZZTQAyp2aEgdUcLKLlPdurQZILsVZA-CrFF2J2gIXe_7e99i_I8cjMg_PRxjZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022558526</pqid></control><display><type>article</type><title>Excess equimolar radius of liquid drops</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Horsch, Martin ; Hasse, Hans ; Shchekin, Alexander K ; Agarwal, Animesh ; Eckelsbach, Stefan ; Vrabec, Jadran ; Müller, Erich A ; Jackson, George</creator><creatorcontrib>Horsch, Martin ; Hasse, Hans ; Shchekin, Alexander K ; Agarwal, Animesh ; Eckelsbach, Stefan ; Vrabec, Jadran ; Müller, Erich A ; Jackson, George</creatorcontrib><description>The curvature dependence of the surface tension is related to the excess equimolar radius of liquid drops, i.e., the deviation of the equimolar radius from the radius defined by the macroscopic capillarity approximation. Based on the Tolman [J. Chem. Phys. 17, 333 (1949)] approach and its interpretation by Nijmeijer et al. [J. Chem. Phys. 96, 565 (1991)], the surface tension of spherical interfaces is analyzed in terms of the pressure difference due to curvature. In the present study, the excess equimolar radius, which can be obtained directly from the density profile, is used instead of the Tolman length. Liquid drops of the truncated and shifted Lennard-Jones fluid are investigated by molecular dynamics simulation in the canonical ensemble, with equimolar radii ranging from 4 to 33 times the Lennard-Jones size parameter σ. In these simulations, the magnitude of the excess equimolar radius is shown to be smaller than σ/2. This suggests that the surface tension of liquid drops at the nanometer length scale is much closer to that of the planar vapor-liquid interface than reported in studies based on the mechanical route.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.85.031605</identifier><identifier>PMID: 22587106</identifier><language>eng</language><publisher>United States</publisher><subject>Computer Simulation ; Microfluidics - methods ; Models, Chemical ; Models, Molecular ; Particle Size ; Solutions - chemistry ; Surface Tension</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-03, Vol.85 (3 Pt 1), p.031605-031605, Article 031605</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-4c8cc68b4c0b0dda11adc86a9beadb6e6fd4c647e2f03bbacae3a7d5a900e5603</citedby><cites>FETCH-LOGICAL-c352t-4c8cc68b4c0b0dda11adc86a9beadb6e6fd4c647e2f03bbacae3a7d5a900e5603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22587106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horsch, Martin</creatorcontrib><creatorcontrib>Hasse, Hans</creatorcontrib><creatorcontrib>Shchekin, Alexander K</creatorcontrib><creatorcontrib>Agarwal, Animesh</creatorcontrib><creatorcontrib>Eckelsbach, Stefan</creatorcontrib><creatorcontrib>Vrabec, Jadran</creatorcontrib><creatorcontrib>Müller, Erich A</creatorcontrib><creatorcontrib>Jackson, George</creatorcontrib><title>Excess equimolar radius of liquid drops</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The curvature dependence of the surface tension is related to the excess equimolar radius of liquid drops, i.e., the deviation of the equimolar radius from the radius defined by the macroscopic capillarity approximation. Based on the Tolman [J. Chem. Phys. 17, 333 (1949)] approach and its interpretation by Nijmeijer et al. [J. Chem. Phys. 96, 565 (1991)], the surface tension of spherical interfaces is analyzed in terms of the pressure difference due to curvature. In the present study, the excess equimolar radius, which can be obtained directly from the density profile, is used instead of the Tolman length. Liquid drops of the truncated and shifted Lennard-Jones fluid are investigated by molecular dynamics simulation in the canonical ensemble, with equimolar radii ranging from 4 to 33 times the Lennard-Jones size parameter σ. In these simulations, the magnitude of the excess equimolar radius is shown to be smaller than σ/2. This suggests that the surface tension of liquid drops at the nanometer length scale is much closer to that of the planar vapor-liquid interface than reported in studies based on the mechanical route.</description><subject>Computer Simulation</subject><subject>Microfluidics - methods</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Particle Size</subject><subject>Solutions - chemistry</subject><subject>Surface Tension</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1Lw0AQhhdRrFb_gAfJTS-ps7vZzfYopX5AQRE9L_sxwUhi2p1G7L83pa2nGYbnfRkexq44TDgHeff6uaE3_JlPjJqA5BrUETvjSkEuZKmPt7uc5rJUasTOib4ApJCmOGUjIZQpOegzdjP_DUiU4aqv265xKUsu1j1lXZU19XCMWUzdki7YSeUawsv9HLOPh_n77ClfvDw-z-4XeZBKrPMimBC08UUADzE6zl0MRrupRxe9Rl3FIuiiRFGB9N4Fh9KVUbkpACoNcsxud73L1K16pLVtawrYNO4bu54sh-F3ZZTQAyp2aEgdUcLKLlPdurQZILsVZA-CrFF2J2gIXe_7e99i_I8cjMg_PRxjZg</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Horsch, Martin</creator><creator>Hasse, Hans</creator><creator>Shchekin, Alexander K</creator><creator>Agarwal, Animesh</creator><creator>Eckelsbach, Stefan</creator><creator>Vrabec, Jadran</creator><creator>Müller, Erich A</creator><creator>Jackson, George</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201203</creationdate><title>Excess equimolar radius of liquid drops</title><author>Horsch, Martin ; Hasse, Hans ; Shchekin, Alexander K ; Agarwal, Animesh ; Eckelsbach, Stefan ; Vrabec, Jadran ; Müller, Erich A ; Jackson, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-4c8cc68b4c0b0dda11adc86a9beadb6e6fd4c647e2f03bbacae3a7d5a900e5603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer Simulation</topic><topic>Microfluidics - methods</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Particle Size</topic><topic>Solutions - chemistry</topic><topic>Surface Tension</topic><toplevel>online_resources</toplevel><creatorcontrib>Horsch, Martin</creatorcontrib><creatorcontrib>Hasse, Hans</creatorcontrib><creatorcontrib>Shchekin, Alexander K</creatorcontrib><creatorcontrib>Agarwal, Animesh</creatorcontrib><creatorcontrib>Eckelsbach, Stefan</creatorcontrib><creatorcontrib>Vrabec, Jadran</creatorcontrib><creatorcontrib>Müller, Erich A</creatorcontrib><creatorcontrib>Jackson, George</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horsch, Martin</au><au>Hasse, Hans</au><au>Shchekin, Alexander K</au><au>Agarwal, Animesh</au><au>Eckelsbach, Stefan</au><au>Vrabec, Jadran</au><au>Müller, Erich A</au><au>Jackson, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excess equimolar radius of liquid drops</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2012-03</date><risdate>2012</risdate><volume>85</volume><issue>3 Pt 1</issue><spage>031605</spage><epage>031605</epage><pages>031605-031605</pages><artnum>031605</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>The curvature dependence of the surface tension is related to the excess equimolar radius of liquid drops, i.e., the deviation of the equimolar radius from the radius defined by the macroscopic capillarity approximation. Based on the Tolman [J. Chem. Phys. 17, 333 (1949)] approach and its interpretation by Nijmeijer et al. [J. Chem. Phys. 96, 565 (1991)], the surface tension of spherical interfaces is analyzed in terms of the pressure difference due to curvature. In the present study, the excess equimolar radius, which can be obtained directly from the density profile, is used instead of the Tolman length. Liquid drops of the truncated and shifted Lennard-Jones fluid are investigated by molecular dynamics simulation in the canonical ensemble, with equimolar radii ranging from 4 to 33 times the Lennard-Jones size parameter σ. In these simulations, the magnitude of the excess equimolar radius is shown to be smaller than σ/2. This suggests that the surface tension of liquid drops at the nanometer length scale is much closer to that of the planar vapor-liquid interface than reported in studies based on the mechanical route.</abstract><cop>United States</cop><pmid>22587106</pmid><doi>10.1103/PhysRevE.85.031605</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-03, Vol.85 (3 Pt 1), p.031605-031605, Article 031605
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_1022558526
source MEDLINE; American Physical Society Journals
subjects Computer Simulation
Microfluidics - methods
Models, Chemical
Models, Molecular
Particle Size
Solutions - chemistry
Surface Tension
title Excess equimolar radius of liquid drops
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excess%20equimolar%20radius%20of%20liquid%20drops&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Horsch,%20Martin&rft.date=2012-03&rft.volume=85&rft.issue=3%20Pt%201&rft.spage=031605&rft.epage=031605&rft.pages=031605-031605&rft.artnum=031605&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.85.031605&rft_dat=%3Cproquest_cross%3E1022558526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022558526&rft_id=info:pmid/22587106&rfr_iscdi=true