A stochastic model of autocatalytic reaction networks

Autocatalytic cycles are rather widespread in nature and in several theoretical models of catalytic reaction networks their emergence is hypothesized to be inevitable when the network is or becomes sufficiently complex. Nevertheless, the emergence of autocatalytic cycles has been never observed in w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory in biosciences = Theorie in den Biowissenschaften 2012-06, Vol.131 (2), p.85-93
Hauptverfasser: Filisetti, Alessandro, Graudenzi, Alex, Serra, Roberto, Villani, Marco, Füchslin, Rudolf M., Packard, Norman, Kauffman, Stuart A., Poli, Irene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue 2
container_start_page 85
container_title Theory in biosciences = Theorie in den Biowissenschaften
container_volume 131
creator Filisetti, Alessandro
Graudenzi, Alex
Serra, Roberto
Villani, Marco
Füchslin, Rudolf M.
Packard, Norman
Kauffman, Stuart A.
Poli, Irene
description Autocatalytic cycles are rather widespread in nature and in several theoretical models of catalytic reaction networks their emergence is hypothesized to be inevitable when the network is or becomes sufficiently complex. Nevertheless, the emergence of autocatalytic cycles has been never observed in wet laboratory experiments. Here, we present a novel model of catalytic reaction networks with the explicit goal of filling the gap between theoretical predictions and experimental findings. The model is based on previous study of Kauffman, with new features in the introduction of a stochastic algorithm to describe the dynamics and in the possibility to increase the number of elements and reactions according to the dynamical evolution of the system. Furthermore, the introduction of a temporal threshold allows the detection of cycles even in our context of a stochastic model with asynchronous update. In this study, we describe the model and present results concerning the effect on the overall dynamics of varying (a) the average residence time of the elements in the reactor, (b) both the composition of the firing disk and the concentration of the molecules belonging to it, (c) the composition of the incoming flux.
doi_str_mv 10.1007/s12064-011-0136-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022378039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022378039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-e41e123c6de40fa03ca880dca9129c902b164726ca0c126b1ee4849811ccd3843</originalsourceid><addsrcrecordid>eNp1kE9PwyAYh4nRuDn9AF5MEy9eqrzAKByXxX_JEi96JpRS7WzLhDZu316aTk1MPBBeXp73B3kQOgd8DRhnNwEI5izFAHFRnm4P0BR4PGVzig9jzWisOdAJOglhjTGBTPJjNCEgMynm2RTNF0nonHnToatM0rjC1okrE93Hpu50vRva3mrTVa5NWtt9Ov8eTtFRqetgz_b7DL3c3T4vH9LV0_3jcrFKDaOiSy0DC4QaXliGS42p0ULgwmgJRBqJSQ6cZYQbjQ0QnoO1TDApAIwpqGB0hq7G3I13H70NnWqqYGxd69a6PijAhNBMYCojevkHXbvet_F3ilAxSOAwUDBSxrsQvC3VxleN9rsYpQananSqolM1OFXbOHOxT-7zxhY_E98SI0BGIMSr9tX636f_T_0CdIKASw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387613619</pqid></control><display><type>article</type><title>A stochastic model of autocatalytic reaction networks</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Filisetti, Alessandro ; Graudenzi, Alex ; Serra, Roberto ; Villani, Marco ; Füchslin, Rudolf M. ; Packard, Norman ; Kauffman, Stuart A. ; Poli, Irene</creator><creatorcontrib>Filisetti, Alessandro ; Graudenzi, Alex ; Serra, Roberto ; Villani, Marco ; Füchslin, Rudolf M. ; Packard, Norman ; Kauffman, Stuart A. ; Poli, Irene</creatorcontrib><description>Autocatalytic cycles are rather widespread in nature and in several theoretical models of catalytic reaction networks their emergence is hypothesized to be inevitable when the network is or becomes sufficiently complex. Nevertheless, the emergence of autocatalytic cycles has been never observed in wet laboratory experiments. Here, we present a novel model of catalytic reaction networks with the explicit goal of filling the gap between theoretical predictions and experimental findings. The model is based on previous study of Kauffman, with new features in the introduction of a stochastic algorithm to describe the dynamics and in the possibility to increase the number of elements and reactions according to the dynamical evolution of the system. Furthermore, the introduction of a temporal threshold allows the detection of cycles even in our context of a stochastic model with asynchronous update. In this study, we describe the model and present results concerning the effect on the overall dynamics of varying (a) the average residence time of the elements in the reactor, (b) both the composition of the firing disk and the concentration of the molecules belonging to it, (c) the composition of the incoming flux.</description><identifier>ISSN: 1431-7613</identifier><identifier>EISSN: 1611-7530</identifier><identifier>DOI: 10.1007/s12064-011-0136-x</identifier><identifier>PMID: 21979857</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Bioinformatics ; Biology ; Biomedical and Life Sciences ; Catalysis ; Complex Systems ; Computer Simulation ; Evolutionary Biology ; Life Sciences ; Mathematical and Computational Biology ; Models, Biological ; Original Paper ; Philosophy of Biology ; Polymers - chemistry ; Stochastic models ; Stochastic Processes ; Theoretical Ecology/Statistics</subject><ispartof>Theory in biosciences = Theorie in den Biowissenschaften, 2012-06, Vol.131 (2), p.85-93</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-e41e123c6de40fa03ca880dca9129c902b164726ca0c126b1ee4849811ccd3843</citedby><cites>FETCH-LOGICAL-c438t-e41e123c6de40fa03ca880dca9129c902b164726ca0c126b1ee4849811ccd3843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12064-011-0136-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12064-011-0136-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21979857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Filisetti, Alessandro</creatorcontrib><creatorcontrib>Graudenzi, Alex</creatorcontrib><creatorcontrib>Serra, Roberto</creatorcontrib><creatorcontrib>Villani, Marco</creatorcontrib><creatorcontrib>Füchslin, Rudolf M.</creatorcontrib><creatorcontrib>Packard, Norman</creatorcontrib><creatorcontrib>Kauffman, Stuart A.</creatorcontrib><creatorcontrib>Poli, Irene</creatorcontrib><title>A stochastic model of autocatalytic reaction networks</title><title>Theory in biosciences = Theorie in den Biowissenschaften</title><addtitle>Theory Biosci</addtitle><addtitle>Theory Biosci</addtitle><description>Autocatalytic cycles are rather widespread in nature and in several theoretical models of catalytic reaction networks their emergence is hypothesized to be inevitable when the network is or becomes sufficiently complex. Nevertheless, the emergence of autocatalytic cycles has been never observed in wet laboratory experiments. Here, we present a novel model of catalytic reaction networks with the explicit goal of filling the gap between theoretical predictions and experimental findings. The model is based on previous study of Kauffman, with new features in the introduction of a stochastic algorithm to describe the dynamics and in the possibility to increase the number of elements and reactions according to the dynamical evolution of the system. Furthermore, the introduction of a temporal threshold allows the detection of cycles even in our context of a stochastic model with asynchronous update. In this study, we describe the model and present results concerning the effect on the overall dynamics of varying (a) the average residence time of the elements in the reactor, (b) both the composition of the firing disk and the concentration of the molecules belonging to it, (c) the composition of the incoming flux.</description><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Catalysis</subject><subject>Complex Systems</subject><subject>Computer Simulation</subject><subject>Evolutionary Biology</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Models, Biological</subject><subject>Original Paper</subject><subject>Philosophy of Biology</subject><subject>Polymers - chemistry</subject><subject>Stochastic models</subject><subject>Stochastic Processes</subject><subject>Theoretical Ecology/Statistics</subject><issn>1431-7613</issn><issn>1611-7530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9PwyAYh4nRuDn9AF5MEy9eqrzAKByXxX_JEi96JpRS7WzLhDZu316aTk1MPBBeXp73B3kQOgd8DRhnNwEI5izFAHFRnm4P0BR4PGVzig9jzWisOdAJOglhjTGBTPJjNCEgMynm2RTNF0nonHnToatM0rjC1okrE93Hpu50vRva3mrTVa5NWtt9Ov8eTtFRqetgz_b7DL3c3T4vH9LV0_3jcrFKDaOiSy0DC4QaXliGS42p0ULgwmgJRBqJSQ6cZYQbjQ0QnoO1TDApAIwpqGB0hq7G3I13H70NnWqqYGxd69a6PijAhNBMYCojevkHXbvet_F3ilAxSOAwUDBSxrsQvC3VxleN9rsYpQananSqolM1OFXbOHOxT-7zxhY_E98SI0BGIMSr9tX636f_T_0CdIKASw</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Filisetti, Alessandro</creator><creator>Graudenzi, Alex</creator><creator>Serra, Roberto</creator><creator>Villani, Marco</creator><creator>Füchslin, Rudolf M.</creator><creator>Packard, Norman</creator><creator>Kauffman, Stuart A.</creator><creator>Poli, Irene</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20120601</creationdate><title>A stochastic model of autocatalytic reaction networks</title><author>Filisetti, Alessandro ; Graudenzi, Alex ; Serra, Roberto ; Villani, Marco ; Füchslin, Rudolf M. ; Packard, Norman ; Kauffman, Stuart A. ; Poli, Irene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-e41e123c6de40fa03ca880dca9129c902b164726ca0c126b1ee4849811ccd3843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Catalysis</topic><topic>Complex Systems</topic><topic>Computer Simulation</topic><topic>Evolutionary Biology</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Models, Biological</topic><topic>Original Paper</topic><topic>Philosophy of Biology</topic><topic>Polymers - chemistry</topic><topic>Stochastic models</topic><topic>Stochastic Processes</topic><topic>Theoretical Ecology/Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filisetti, Alessandro</creatorcontrib><creatorcontrib>Graudenzi, Alex</creatorcontrib><creatorcontrib>Serra, Roberto</creatorcontrib><creatorcontrib>Villani, Marco</creatorcontrib><creatorcontrib>Füchslin, Rudolf M.</creatorcontrib><creatorcontrib>Packard, Norman</creatorcontrib><creatorcontrib>Kauffman, Stuart A.</creatorcontrib><creatorcontrib>Poli, Irene</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Theory in biosciences = Theorie in den Biowissenschaften</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filisetti, Alessandro</au><au>Graudenzi, Alex</au><au>Serra, Roberto</au><au>Villani, Marco</au><au>Füchslin, Rudolf M.</au><au>Packard, Norman</au><au>Kauffman, Stuart A.</au><au>Poli, Irene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stochastic model of autocatalytic reaction networks</atitle><jtitle>Theory in biosciences = Theorie in den Biowissenschaften</jtitle><stitle>Theory Biosci</stitle><addtitle>Theory Biosci</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>131</volume><issue>2</issue><spage>85</spage><epage>93</epage><pages>85-93</pages><issn>1431-7613</issn><eissn>1611-7530</eissn><abstract>Autocatalytic cycles are rather widespread in nature and in several theoretical models of catalytic reaction networks their emergence is hypothesized to be inevitable when the network is or becomes sufficiently complex. Nevertheless, the emergence of autocatalytic cycles has been never observed in wet laboratory experiments. Here, we present a novel model of catalytic reaction networks with the explicit goal of filling the gap between theoretical predictions and experimental findings. The model is based on previous study of Kauffman, with new features in the introduction of a stochastic algorithm to describe the dynamics and in the possibility to increase the number of elements and reactions according to the dynamical evolution of the system. Furthermore, the introduction of a temporal threshold allows the detection of cycles even in our context of a stochastic model with asynchronous update. In this study, we describe the model and present results concerning the effect on the overall dynamics of varying (a) the average residence time of the elements in the reactor, (b) both the composition of the firing disk and the concentration of the molecules belonging to it, (c) the composition of the incoming flux.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21979857</pmid><doi>10.1007/s12064-011-0136-x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1431-7613
ispartof Theory in biosciences = Theorie in den Biowissenschaften, 2012-06, Vol.131 (2), p.85-93
issn 1431-7613
1611-7530
language eng
recordid cdi_proquest_miscellaneous_1022378039
source MEDLINE; SpringerLink Journals
subjects Bioinformatics
Biology
Biomedical and Life Sciences
Catalysis
Complex Systems
Computer Simulation
Evolutionary Biology
Life Sciences
Mathematical and Computational Biology
Models, Biological
Original Paper
Philosophy of Biology
Polymers - chemistry
Stochastic models
Stochastic Processes
Theoretical Ecology/Statistics
title A stochastic model of autocatalytic reaction networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stochastic%20model%20of%20autocatalytic%20reaction%20networks&rft.jtitle=Theory%20in%20biosciences%20=%20Theorie%20in%20den%20Biowissenschaften&rft.au=Filisetti,%20Alessandro&rft.date=2012-06-01&rft.volume=131&rft.issue=2&rft.spage=85&rft.epage=93&rft.pages=85-93&rft.issn=1431-7613&rft.eissn=1611-7530&rft_id=info:doi/10.1007/s12064-011-0136-x&rft_dat=%3Cproquest_cross%3E1022378039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387613619&rft_id=info:pmid/21979857&rfr_iscdi=true