Short- and long-term peripheral nerve regeneration using a poly-lactic-co-glycolic-acid scaffold containing nerve growth factor and glial cell line-derived neurotrophic factor releasing microspheres

Addition of neural growth factors to bioengineered scaffolds may improve peripheral nerve regeneration. The aim of this study is to evaluate the short‐ and long term effect of microsphere delivered nerve growth factor (NGF) and glial cell derived neurotrophic factor (GDNF) in the 10 mm rat sciatic n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2012-08, Vol.100A (8), p.2139-2146
Hauptverfasser: de Boer, Ralph, Borntraeger, Andreas, Knight, Andrew M., Hébert-Blouin, Marie-Noëlle, Spinner, Robert J., Malessy, Martijn J. A., Yaszemski, Michael J., Windebank, Anthony J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2146
container_issue 8
container_start_page 2139
container_title Journal of biomedical materials research. Part A
container_volume 100A
creator de Boer, Ralph
Borntraeger, Andreas
Knight, Andrew M.
Hébert-Blouin, Marie-Noëlle
Spinner, Robert J.
Malessy, Martijn J. A.
Yaszemski, Michael J.
Windebank, Anthony J.
description Addition of neural growth factors to bioengineered scaffolds may improve peripheral nerve regeneration. The aim of this study is to evaluate the short‐ and long term effect of microsphere delivered nerve growth factor (NGF) and glial cell derived neurotrophic factor (GDNF) in the 10 mm rat sciatic nerve gap. Eighty‐four rats were assigned to seven groups (n = 6) at two endpoints (6 and 16 weeks): saline, saline NGF, saline NGF‐microspheres, saline GDNF, saline GDNF‐microspheres, saline blank microspheres, and autologous nerve graft. Total fascicular area and total number of myelinated fibers at mid‐tube increased in all conduit groups between 6 and 16 weeks. Autologous, saline NGF‐microsphere and saline GDNF‐microsphere groups reached maximal histomorphometric values by 6 weeks (p < 0.05). Compound muscle action potentials returned after 6 weeks for the autologous graft and continued to increase to a level of 3.6 ± 1.9 mV at endpoint. No significant differences were found between study groups as measured by ankle angle. These experiments show an initial beneficial effect of incorporation of NGF‐ or GDNF‐microspheres in a PLGA 85/15 nerve conduit, since histomorphometric values reached their maximum by 6 weeks compared to control groups. These results do not yet extrapolate into improved electrophysiological or functional improvement. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.
doi_str_mv 10.1002/jbm.a.34088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1021981224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1021981224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3998-8bb06f435618c89444bb352b6dbf37a1971541323f18e340265b482b7a547de3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEog9YsUfeICFVHuJHEmdJK5iCBpBKJZaW49xkXJw42EnL_EF-F85kpuxY-S6-c8_xPUnyiqQrkqb03V3VrdSK8VSIJ8kpyTKKeZlnT-eZl5jRMj9JzkK4i3CeZvR5ckJpTjLCxWny5_vW-REj1dfIur7FI_gODeDNsAWvLOrB3wPy0EKc1Ghcj6Zg-hYpNDi7w1bp0WisHW7tTjsbZ6VNjYJWTeNsjbTrR2X6WbLsar17GLeoiULn98atNdFJg7XImh5wHe3voY785N3o3bA1-sh7sKD2ATqjvQtzTAgvkmeNsgFeHt7z5Pbjh9ura7z5tv509X6DNStLgUVVpXnDWZYToUXJOa8qltEqr6uGFYqURTwZYZQ1REC8KM2zigtaFSrjRQ3sPHm7rB28-zVBGGVnwpxb9eCmIElKSSkIpTyiFws6hwweGjl40ym_i5Cce5OxN6nkvrdIvz4snqoO6kf2WFQE3hwAFS9rG696bcI_LifxVyWNHFm4B2Nh9z9P-fnyy9EcLxoTRvj9qFH-p8wLVmTyx9e1vLze0OKG3Mg1-wsZScOG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1021981224</pqid></control><display><type>article</type><title>Short- and long-term peripheral nerve regeneration using a poly-lactic-co-glycolic-acid scaffold containing nerve growth factor and glial cell line-derived neurotrophic factor releasing microspheres</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>de Boer, Ralph ; Borntraeger, Andreas ; Knight, Andrew M. ; Hébert-Blouin, Marie-Noëlle ; Spinner, Robert J. ; Malessy, Martijn J. A. ; Yaszemski, Michael J. ; Windebank, Anthony J.</creator><creatorcontrib>de Boer, Ralph ; Borntraeger, Andreas ; Knight, Andrew M. ; Hébert-Blouin, Marie-Noëlle ; Spinner, Robert J. ; Malessy, Martijn J. A. ; Yaszemski, Michael J. ; Windebank, Anthony J.</creatorcontrib><description>Addition of neural growth factors to bioengineered scaffolds may improve peripheral nerve regeneration. The aim of this study is to evaluate the short‐ and long term effect of microsphere delivered nerve growth factor (NGF) and glial cell derived neurotrophic factor (GDNF) in the 10 mm rat sciatic nerve gap. Eighty‐four rats were assigned to seven groups (n = 6) at two endpoints (6 and 16 weeks): saline, saline NGF, saline NGF‐microspheres, saline GDNF, saline GDNF‐microspheres, saline blank microspheres, and autologous nerve graft. Total fascicular area and total number of myelinated fibers at mid‐tube increased in all conduit groups between 6 and 16 weeks. Autologous, saline NGF‐microsphere and saline GDNF‐microsphere groups reached maximal histomorphometric values by 6 weeks (p &lt; 0.05). Compound muscle action potentials returned after 6 weeks for the autologous graft and continued to increase to a level of 3.6 ± 1.9 mV at endpoint. No significant differences were found between study groups as measured by ankle angle. These experiments show an initial beneficial effect of incorporation of NGF‐ or GDNF‐microspheres in a PLGA 85/15 nerve conduit, since histomorphometric values reached their maximum by 6 weeks compared to control groups. These results do not yet extrapolate into improved electrophysiological or functional improvement. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.34088</identifier><identifier>PMID: 22615148</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Action Potentials - drug effects ; Animals ; Biological and medical sciences ; GDNF ; Glial Cell Line-Derived Neurotrophic Factor - pharmacology ; Lactic Acid - chemistry ; Medical sciences ; Microspheres ; Motor Neurons - drug effects ; Motor Neurons - physiology ; Movement - drug effects ; Muscles - drug effects ; Muscles - physiology ; Nerve Regeneration - drug effects ; Neurosurgery ; NGF ; Peripheral Nerves - drug effects ; Peripheral Nerves - physiology ; PLGA ; Polyglycolic Acid - chemistry ; Rats ; Rats, Sprague-Dawley ; regeneration ; scaffold ; sciatic nerve ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Time Factors ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2012-08, Vol.100A (8), p.2139-2146</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3998-8bb06f435618c89444bb352b6dbf37a1971541323f18e340265b482b7a547de3</citedby><cites>FETCH-LOGICAL-c3998-8bb06f435618c89444bb352b6dbf37a1971541323f18e340265b482b7a547de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.34088$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.34088$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26143592$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22615148$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Boer, Ralph</creatorcontrib><creatorcontrib>Borntraeger, Andreas</creatorcontrib><creatorcontrib>Knight, Andrew M.</creatorcontrib><creatorcontrib>Hébert-Blouin, Marie-Noëlle</creatorcontrib><creatorcontrib>Spinner, Robert J.</creatorcontrib><creatorcontrib>Malessy, Martijn J. A.</creatorcontrib><creatorcontrib>Yaszemski, Michael J.</creatorcontrib><creatorcontrib>Windebank, Anthony J.</creatorcontrib><title>Short- and long-term peripheral nerve regeneration using a poly-lactic-co-glycolic-acid scaffold containing nerve growth factor and glial cell line-derived neurotrophic factor releasing microspheres</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Addition of neural growth factors to bioengineered scaffolds may improve peripheral nerve regeneration. The aim of this study is to evaluate the short‐ and long term effect of microsphere delivered nerve growth factor (NGF) and glial cell derived neurotrophic factor (GDNF) in the 10 mm rat sciatic nerve gap. Eighty‐four rats were assigned to seven groups (n = 6) at two endpoints (6 and 16 weeks): saline, saline NGF, saline NGF‐microspheres, saline GDNF, saline GDNF‐microspheres, saline blank microspheres, and autologous nerve graft. Total fascicular area and total number of myelinated fibers at mid‐tube increased in all conduit groups between 6 and 16 weeks. Autologous, saline NGF‐microsphere and saline GDNF‐microsphere groups reached maximal histomorphometric values by 6 weeks (p &lt; 0.05). Compound muscle action potentials returned after 6 weeks for the autologous graft and continued to increase to a level of 3.6 ± 1.9 mV at endpoint. No significant differences were found between study groups as measured by ankle angle. These experiments show an initial beneficial effect of incorporation of NGF‐ or GDNF‐microspheres in a PLGA 85/15 nerve conduit, since histomorphometric values reached their maximum by 6 weeks compared to control groups. These results do not yet extrapolate into improved electrophysiological or functional improvement. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.</description><subject>Action Potentials - drug effects</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>GDNF</subject><subject>Glial Cell Line-Derived Neurotrophic Factor - pharmacology</subject><subject>Lactic Acid - chemistry</subject><subject>Medical sciences</subject><subject>Microspheres</subject><subject>Motor Neurons - drug effects</subject><subject>Motor Neurons - physiology</subject><subject>Movement - drug effects</subject><subject>Muscles - drug effects</subject><subject>Muscles - physiology</subject><subject>Nerve Regeneration - drug effects</subject><subject>Neurosurgery</subject><subject>NGF</subject><subject>Peripheral Nerves - drug effects</subject><subject>Peripheral Nerves - physiology</subject><subject>PLGA</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>regeneration</subject><subject>scaffold</subject><subject>sciatic nerve</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Time Factors</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhSMEog9YsUfeICFVHuJHEmdJK5iCBpBKJZaW49xkXJw42EnL_EF-F85kpuxY-S6-c8_xPUnyiqQrkqb03V3VrdSK8VSIJ8kpyTKKeZlnT-eZl5jRMj9JzkK4i3CeZvR5ckJpTjLCxWny5_vW-REj1dfIur7FI_gODeDNsAWvLOrB3wPy0EKc1Ghcj6Zg-hYpNDi7w1bp0WisHW7tTjsbZ6VNjYJWTeNsjbTrR2X6WbLsar17GLeoiULn98atNdFJg7XImh5wHe3voY785N3o3bA1-sh7sKD2ATqjvQtzTAgvkmeNsgFeHt7z5Pbjh9ura7z5tv509X6DNStLgUVVpXnDWZYToUXJOa8qltEqr6uGFYqURTwZYZQ1REC8KM2zigtaFSrjRQ3sPHm7rB28-zVBGGVnwpxb9eCmIElKSSkIpTyiFws6hwweGjl40ym_i5Cce5OxN6nkvrdIvz4snqoO6kf2WFQE3hwAFS9rG696bcI_LifxVyWNHFm4B2Nh9z9P-fnyy9EcLxoTRvj9qFH-p8wLVmTyx9e1vLze0OKG3Mg1-wsZScOG</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>de Boer, Ralph</creator><creator>Borntraeger, Andreas</creator><creator>Knight, Andrew M.</creator><creator>Hébert-Blouin, Marie-Noëlle</creator><creator>Spinner, Robert J.</creator><creator>Malessy, Martijn J. A.</creator><creator>Yaszemski, Michael J.</creator><creator>Windebank, Anthony J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201208</creationdate><title>Short- and long-term peripheral nerve regeneration using a poly-lactic-co-glycolic-acid scaffold containing nerve growth factor and glial cell line-derived neurotrophic factor releasing microspheres</title><author>de Boer, Ralph ; Borntraeger, Andreas ; Knight, Andrew M. ; Hébert-Blouin, Marie-Noëlle ; Spinner, Robert J. ; Malessy, Martijn J. A. ; Yaszemski, Michael J. ; Windebank, Anthony J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3998-8bb06f435618c89444bb352b6dbf37a1971541323f18e340265b482b7a547de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Action Potentials - drug effects</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>GDNF</topic><topic>Glial Cell Line-Derived Neurotrophic Factor - pharmacology</topic><topic>Lactic Acid - chemistry</topic><topic>Medical sciences</topic><topic>Microspheres</topic><topic>Motor Neurons - drug effects</topic><topic>Motor Neurons - physiology</topic><topic>Movement - drug effects</topic><topic>Muscles - drug effects</topic><topic>Muscles - physiology</topic><topic>Nerve Regeneration - drug effects</topic><topic>Neurosurgery</topic><topic>NGF</topic><topic>Peripheral Nerves - drug effects</topic><topic>Peripheral Nerves - physiology</topic><topic>PLGA</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>regeneration</topic><topic>scaffold</topic><topic>sciatic nerve</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Time Factors</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Boer, Ralph</creatorcontrib><creatorcontrib>Borntraeger, Andreas</creatorcontrib><creatorcontrib>Knight, Andrew M.</creatorcontrib><creatorcontrib>Hébert-Blouin, Marie-Noëlle</creatorcontrib><creatorcontrib>Spinner, Robert J.</creatorcontrib><creatorcontrib>Malessy, Martijn J. A.</creatorcontrib><creatorcontrib>Yaszemski, Michael J.</creatorcontrib><creatorcontrib>Windebank, Anthony J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Boer, Ralph</au><au>Borntraeger, Andreas</au><au>Knight, Andrew M.</au><au>Hébert-Blouin, Marie-Noëlle</au><au>Spinner, Robert J.</au><au>Malessy, Martijn J. A.</au><au>Yaszemski, Michael J.</au><au>Windebank, Anthony J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short- and long-term peripheral nerve regeneration using a poly-lactic-co-glycolic-acid scaffold containing nerve growth factor and glial cell line-derived neurotrophic factor releasing microspheres</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2012-08</date><risdate>2012</risdate><volume>100A</volume><issue>8</issue><spage>2139</spage><epage>2146</epage><pages>2139-2146</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Addition of neural growth factors to bioengineered scaffolds may improve peripheral nerve regeneration. The aim of this study is to evaluate the short‐ and long term effect of microsphere delivered nerve growth factor (NGF) and glial cell derived neurotrophic factor (GDNF) in the 10 mm rat sciatic nerve gap. Eighty‐four rats were assigned to seven groups (n = 6) at two endpoints (6 and 16 weeks): saline, saline NGF, saline NGF‐microspheres, saline GDNF, saline GDNF‐microspheres, saline blank microspheres, and autologous nerve graft. Total fascicular area and total number of myelinated fibers at mid‐tube increased in all conduit groups between 6 and 16 weeks. Autologous, saline NGF‐microsphere and saline GDNF‐microsphere groups reached maximal histomorphometric values by 6 weeks (p &lt; 0.05). Compound muscle action potentials returned after 6 weeks for the autologous graft and continued to increase to a level of 3.6 ± 1.9 mV at endpoint. No significant differences were found between study groups as measured by ankle angle. These experiments show an initial beneficial effect of incorporation of NGF‐ or GDNF‐microspheres in a PLGA 85/15 nerve conduit, since histomorphometric values reached their maximum by 6 weeks compared to control groups. These results do not yet extrapolate into improved electrophysiological or functional improvement. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22615148</pmid><doi>10.1002/jbm.a.34088</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2012-08, Vol.100A (8), p.2139-2146
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1021981224
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Action Potentials - drug effects
Animals
Biological and medical sciences
GDNF
Glial Cell Line-Derived Neurotrophic Factor - pharmacology
Lactic Acid - chemistry
Medical sciences
Microspheres
Motor Neurons - drug effects
Motor Neurons - physiology
Movement - drug effects
Muscles - drug effects
Muscles - physiology
Nerve Regeneration - drug effects
Neurosurgery
NGF
Peripheral Nerves - drug effects
Peripheral Nerves - physiology
PLGA
Polyglycolic Acid - chemistry
Rats
Rats, Sprague-Dawley
regeneration
scaffold
sciatic nerve
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Time Factors
Tissue Scaffolds - chemistry
title Short- and long-term peripheral nerve regeneration using a poly-lactic-co-glycolic-acid scaffold containing nerve growth factor and glial cell line-derived neurotrophic factor releasing microspheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-%20and%20long-term%20peripheral%20nerve%20regeneration%20using%20a%20poly-lactic-co-glycolic-acid%20scaffold%20containing%20nerve%20growth%20factor%20and%20glial%20cell%20line-derived%20neurotrophic%20factor%20releasing%20microspheres&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=de%20Boer,%20Ralph&rft.date=2012-08&rft.volume=100A&rft.issue=8&rft.spage=2139&rft.epage=2146&rft.pages=2139-2146&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.34088&rft_dat=%3Cproquest_cross%3E1021981224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1021981224&rft_id=info:pmid/22615148&rfr_iscdi=true