Killing me softly – Suicidal erythrocyte death
Similar to nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is characterized by cell shrinkage, cell membrane blebbing and cell membrane phospholipid scrambling. Eryptotic cells are removed and thus prevented from undergoing hemolysis. Eryptosis is stimulated by Ca2+ foll...
Gespeichert in:
Veröffentlicht in: | The international journal of biochemistry & cell biology 2012-08, Vol.44 (8), p.1236-1243 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1243 |
---|---|
container_issue | 8 |
container_start_page | 1236 |
container_title | The international journal of biochemistry & cell biology |
container_volume | 44 |
creator | Lang, Elisabeth Qadri, Syed M. Lang, Florian |
description | Similar to nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is characterized by cell shrinkage, cell membrane blebbing and cell membrane phospholipid scrambling. Eryptotic cells are removed and thus prevented from undergoing hemolysis. Eryptosis is stimulated by Ca2+ following Ca2+ entry through unspecific cation channels. Ca2+ sensitivity is enhanced by ceramide, a product of acid sphingomyelinase. Eryptosis is triggered by hyperosmolarity, oxidative stress, energy depletion, hyperthermia and a wide variety of xenobiotics and endogenous substances. Eryptosis is inhibited by nitric oxide, catecholamines and a variety of further small molecules. Erythropoietin counteracts eryptosis in part by inhibiting the Ca2+-permeable cation channels but by the same token may foster formation of erythrocytes, which are particularly sensitive to eryptotic stimuli. Eryptosis is triggered in several clinical conditions such as iron deficiency, diabetes, renal insufficiency, myelodysplastic syndrome, phosphate depletion, sepsis, haemolytic uremic syndrome, mycoplasma infection, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase-(G6PD)-deficiency, hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria, and Wilson's disease. Enhanced eryptosis is observed in mice with deficient annexin 7, cGMP-dependent protein kinase type I (cGKI), AMP-activated protein kinase AMPK, anion exchanger AE1, adenomatous polyposis coli APC and Klotho as well as in mouse models of sickle cell anemia and thalassemia. Eryptosis is decreased in mice with deficient phosphoinositide dependent kinase PDK1, platelet activating factor receptor, transient receptor potential channel TRPC6, janus kinase JAK3 or taurine transporter TAUT. If accelerated eryptosis is not compensated by enhanced erythropoiesis, clinically relevant anemia develops. Eryptotic erythrocytes may further bind to endothelial cells and thus impede microcirculation. |
doi_str_mv | 10.1016/j.biocel.2012.04.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1021450825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1357272512001446</els_id><sourcerecordid>1021450825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-91c76f4db0ddc5c4021bbb656ac3edb2c56fd425b7e3e885425c4f5fed08aa823</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhy0EoqXwBggysiTYju24CxKq-CcqMZTOlmNfWldpU-wEqRvvwBvyJLgKMDLdDd_97u5D6JzgjGAirldZ6RoDdUYxoRlmGSbjAzQkspAplwU_jH3Oi5QWlA_QSQgrjDHhND9GA0q5IAWTQ4SfXV27zSJZQxKaqq13ydfHZzLrnHFW1wn4Xbv0jdm1kFjQ7fIUHVW6DnD2U0dofn_3OnlMpy8PT5PbaWpyKdp0TEwhKmZLbK3hhmFKyrIUXGiTgy2p4aKyjPKygByk5LE1rOIVWCy1ljQfoas-d-ubtw5Cq9YuxHdrvYGmC4rERMaxpDyirEeNb0LwUKmtd2vtdxFSe1dqpXpXau9KYaaiqzh28bOhK9dg_4Z-5UTgsgcq3Si98C6o-SwmiChSEsFwJG56AqKJdwdeBeNgY8A6D6ZVtnH_3_ANm9mFuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1021450825</pqid></control><display><type>article</type><title>Killing me softly – Suicidal erythrocyte death</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lang, Elisabeth ; Qadri, Syed M. ; Lang, Florian</creator><creatorcontrib>Lang, Elisabeth ; Qadri, Syed M. ; Lang, Florian</creatorcontrib><description>Similar to nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is characterized by cell shrinkage, cell membrane blebbing and cell membrane phospholipid scrambling. Eryptotic cells are removed and thus prevented from undergoing hemolysis. Eryptosis is stimulated by Ca2+ following Ca2+ entry through unspecific cation channels. Ca2+ sensitivity is enhanced by ceramide, a product of acid sphingomyelinase. Eryptosis is triggered by hyperosmolarity, oxidative stress, energy depletion, hyperthermia and a wide variety of xenobiotics and endogenous substances. Eryptosis is inhibited by nitric oxide, catecholamines and a variety of further small molecules. Erythropoietin counteracts eryptosis in part by inhibiting the Ca2+-permeable cation channels but by the same token may foster formation of erythrocytes, which are particularly sensitive to eryptotic stimuli. Eryptosis is triggered in several clinical conditions such as iron deficiency, diabetes, renal insufficiency, myelodysplastic syndrome, phosphate depletion, sepsis, haemolytic uremic syndrome, mycoplasma infection, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase-(G6PD)-deficiency, hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria, and Wilson's disease. Enhanced eryptosis is observed in mice with deficient annexin 7, cGMP-dependent protein kinase type I (cGKI), AMP-activated protein kinase AMPK, anion exchanger AE1, adenomatous polyposis coli APC and Klotho as well as in mouse models of sickle cell anemia and thalassemia. Eryptosis is decreased in mice with deficient phosphoinositide dependent kinase PDK1, platelet activating factor receptor, transient receptor potential channel TRPC6, janus kinase JAK3 or taurine transporter TAUT. If accelerated eryptosis is not compensated by enhanced erythropoiesis, clinically relevant anemia develops. Eryptotic erythrocytes may further bind to endothelial cells and thus impede microcirculation.</description><identifier>ISSN: 1357-2725</identifier><identifier>EISSN: 1878-5875</identifier><identifier>DOI: 10.1016/j.biocel.2012.04.019</identifier><identifier>PMID: 22561748</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>AMP-activated protein kinase ; Anemia ; animal models ; Animals ; Apoptosis ; Apoptosis - physiology ; calcium ; Calcium - metabolism ; Calcium - pharmacology ; catecholamines ; cell death ; cell membranes ; ceramides ; Ceramides - pharmacology ; cGMP-dependent protein kinase ; diabetes ; endothelial cells ; energy ; Eryptosis ; erythrocytes ; Erythrocytes - physiology ; erythropoiesis ; erythropoietin ; fever ; glucose 6-phosphate ; glucose-6-phosphate 1-dehydrogenase ; hemoglobinuria ; hemolysis ; hepatolenticular degeneration ; Humans ; iron ; Malaria ; Mice ; Models, Biological ; nitric oxide ; non-specific protein-tyrosine kinase ; nutrient deficiencies ; oxidative stress ; phosphates ; phospholipids ; platelet-activating factor ; Red blood cell ; renal failure ; Sepsis ; sepsis (infection) ; shrinkage ; sickle cell anemia ; Signal Transduction - drug effects ; Signal Transduction - physiology ; taurine ; thalassemia ; xenobiotics ; Xenobiotics - pharmacology</subject><ispartof>The international journal of biochemistry & cell biology, 2012-08, Vol.44 (8), p.1236-1243</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-91c76f4db0ddc5c4021bbb656ac3edb2c56fd425b7e3e885425c4f5fed08aa823</citedby><cites>FETCH-LOGICAL-c386t-91c76f4db0ddc5c4021bbb656ac3edb2c56fd425b7e3e885425c4f5fed08aa823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biocel.2012.04.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22561748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lang, Elisabeth</creatorcontrib><creatorcontrib>Qadri, Syed M.</creatorcontrib><creatorcontrib>Lang, Florian</creatorcontrib><title>Killing me softly – Suicidal erythrocyte death</title><title>The international journal of biochemistry & cell biology</title><addtitle>Int J Biochem Cell Biol</addtitle><description>Similar to nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is characterized by cell shrinkage, cell membrane blebbing and cell membrane phospholipid scrambling. Eryptotic cells are removed and thus prevented from undergoing hemolysis. Eryptosis is stimulated by Ca2+ following Ca2+ entry through unspecific cation channels. Ca2+ sensitivity is enhanced by ceramide, a product of acid sphingomyelinase. Eryptosis is triggered by hyperosmolarity, oxidative stress, energy depletion, hyperthermia and a wide variety of xenobiotics and endogenous substances. Eryptosis is inhibited by nitric oxide, catecholamines and a variety of further small molecules. Erythropoietin counteracts eryptosis in part by inhibiting the Ca2+-permeable cation channels but by the same token may foster formation of erythrocytes, which are particularly sensitive to eryptotic stimuli. Eryptosis is triggered in several clinical conditions such as iron deficiency, diabetes, renal insufficiency, myelodysplastic syndrome, phosphate depletion, sepsis, haemolytic uremic syndrome, mycoplasma infection, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase-(G6PD)-deficiency, hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria, and Wilson's disease. Enhanced eryptosis is observed in mice with deficient annexin 7, cGMP-dependent protein kinase type I (cGKI), AMP-activated protein kinase AMPK, anion exchanger AE1, adenomatous polyposis coli APC and Klotho as well as in mouse models of sickle cell anemia and thalassemia. Eryptosis is decreased in mice with deficient phosphoinositide dependent kinase PDK1, platelet activating factor receptor, transient receptor potential channel TRPC6, janus kinase JAK3 or taurine transporter TAUT. If accelerated eryptosis is not compensated by enhanced erythropoiesis, clinically relevant anemia develops. Eryptotic erythrocytes may further bind to endothelial cells and thus impede microcirculation.</description><subject>AMP-activated protein kinase</subject><subject>Anemia</subject><subject>animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium - pharmacology</subject><subject>catecholamines</subject><subject>cell death</subject><subject>cell membranes</subject><subject>ceramides</subject><subject>Ceramides - pharmacology</subject><subject>cGMP-dependent protein kinase</subject><subject>diabetes</subject><subject>endothelial cells</subject><subject>energy</subject><subject>Eryptosis</subject><subject>erythrocytes</subject><subject>Erythrocytes - physiology</subject><subject>erythropoiesis</subject><subject>erythropoietin</subject><subject>fever</subject><subject>glucose 6-phosphate</subject><subject>glucose-6-phosphate 1-dehydrogenase</subject><subject>hemoglobinuria</subject><subject>hemolysis</subject><subject>hepatolenticular degeneration</subject><subject>Humans</subject><subject>iron</subject><subject>Malaria</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>nitric oxide</subject><subject>non-specific protein-tyrosine kinase</subject><subject>nutrient deficiencies</subject><subject>oxidative stress</subject><subject>phosphates</subject><subject>phospholipids</subject><subject>platelet-activating factor</subject><subject>Red blood cell</subject><subject>renal failure</subject><subject>Sepsis</subject><subject>sepsis (infection)</subject><subject>shrinkage</subject><subject>sickle cell anemia</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>taurine</subject><subject>thalassemia</subject><subject>xenobiotics</subject><subject>Xenobiotics - pharmacology</subject><issn>1357-2725</issn><issn>1878-5875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kL9OwzAQhy0EoqXwBggysiTYju24CxKq-CcqMZTOlmNfWldpU-wEqRvvwBvyJLgKMDLdDd_97u5D6JzgjGAirldZ6RoDdUYxoRlmGSbjAzQkspAplwU_jH3Oi5QWlA_QSQgrjDHhND9GA0q5IAWTQ4SfXV27zSJZQxKaqq13ydfHZzLrnHFW1wn4Xbv0jdm1kFjQ7fIUHVW6DnD2U0dofn_3OnlMpy8PT5PbaWpyKdp0TEwhKmZLbK3hhmFKyrIUXGiTgy2p4aKyjPKygByk5LE1rOIVWCy1ljQfoas-d-ubtw5Cq9YuxHdrvYGmC4rERMaxpDyirEeNb0LwUKmtd2vtdxFSe1dqpXpXau9KYaaiqzh28bOhK9dg_4Z-5UTgsgcq3Si98C6o-SwmiChSEsFwJG56AqKJdwdeBeNgY8A6D6ZVtnH_3_ANm9mFuQ</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Lang, Elisabeth</creator><creator>Qadri, Syed M.</creator><creator>Lang, Florian</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120801</creationdate><title>Killing me softly – Suicidal erythrocyte death</title><author>Lang, Elisabeth ; Qadri, Syed M. ; Lang, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-91c76f4db0ddc5c4021bbb656ac3edb2c56fd425b7e3e885425c4f5fed08aa823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AMP-activated protein kinase</topic><topic>Anemia</topic><topic>animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium - pharmacology</topic><topic>catecholamines</topic><topic>cell death</topic><topic>cell membranes</topic><topic>ceramides</topic><topic>Ceramides - pharmacology</topic><topic>cGMP-dependent protein kinase</topic><topic>diabetes</topic><topic>endothelial cells</topic><topic>energy</topic><topic>Eryptosis</topic><topic>erythrocytes</topic><topic>Erythrocytes - physiology</topic><topic>erythropoiesis</topic><topic>erythropoietin</topic><topic>fever</topic><topic>glucose 6-phosphate</topic><topic>glucose-6-phosphate 1-dehydrogenase</topic><topic>hemoglobinuria</topic><topic>hemolysis</topic><topic>hepatolenticular degeneration</topic><topic>Humans</topic><topic>iron</topic><topic>Malaria</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>nitric oxide</topic><topic>non-specific protein-tyrosine kinase</topic><topic>nutrient deficiencies</topic><topic>oxidative stress</topic><topic>phosphates</topic><topic>phospholipids</topic><topic>platelet-activating factor</topic><topic>Red blood cell</topic><topic>renal failure</topic><topic>Sepsis</topic><topic>sepsis (infection)</topic><topic>shrinkage</topic><topic>sickle cell anemia</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>taurine</topic><topic>thalassemia</topic><topic>xenobiotics</topic><topic>Xenobiotics - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, Elisabeth</creatorcontrib><creatorcontrib>Qadri, Syed M.</creatorcontrib><creatorcontrib>Lang, Florian</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The international journal of biochemistry & cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lang, Elisabeth</au><au>Qadri, Syed M.</au><au>Lang, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Killing me softly – Suicidal erythrocyte death</atitle><jtitle>The international journal of biochemistry & cell biology</jtitle><addtitle>Int J Biochem Cell Biol</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>44</volume><issue>8</issue><spage>1236</spage><epage>1243</epage><pages>1236-1243</pages><issn>1357-2725</issn><eissn>1878-5875</eissn><abstract>Similar to nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is characterized by cell shrinkage, cell membrane blebbing and cell membrane phospholipid scrambling. Eryptotic cells are removed and thus prevented from undergoing hemolysis. Eryptosis is stimulated by Ca2+ following Ca2+ entry through unspecific cation channels. Ca2+ sensitivity is enhanced by ceramide, a product of acid sphingomyelinase. Eryptosis is triggered by hyperosmolarity, oxidative stress, energy depletion, hyperthermia and a wide variety of xenobiotics and endogenous substances. Eryptosis is inhibited by nitric oxide, catecholamines and a variety of further small molecules. Erythropoietin counteracts eryptosis in part by inhibiting the Ca2+-permeable cation channels but by the same token may foster formation of erythrocytes, which are particularly sensitive to eryptotic stimuli. Eryptosis is triggered in several clinical conditions such as iron deficiency, diabetes, renal insufficiency, myelodysplastic syndrome, phosphate depletion, sepsis, haemolytic uremic syndrome, mycoplasma infection, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase-(G6PD)-deficiency, hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria, and Wilson's disease. Enhanced eryptosis is observed in mice with deficient annexin 7, cGMP-dependent protein kinase type I (cGKI), AMP-activated protein kinase AMPK, anion exchanger AE1, adenomatous polyposis coli APC and Klotho as well as in mouse models of sickle cell anemia and thalassemia. Eryptosis is decreased in mice with deficient phosphoinositide dependent kinase PDK1, platelet activating factor receptor, transient receptor potential channel TRPC6, janus kinase JAK3 or taurine transporter TAUT. If accelerated eryptosis is not compensated by enhanced erythropoiesis, clinically relevant anemia develops. Eryptotic erythrocytes may further bind to endothelial cells and thus impede microcirculation.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>22561748</pmid><doi>10.1016/j.biocel.2012.04.019</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1357-2725 |
ispartof | The international journal of biochemistry & cell biology, 2012-08, Vol.44 (8), p.1236-1243 |
issn | 1357-2725 1878-5875 |
language | eng |
recordid | cdi_proquest_miscellaneous_1021450825 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | AMP-activated protein kinase Anemia animal models Animals Apoptosis Apoptosis - physiology calcium Calcium - metabolism Calcium - pharmacology catecholamines cell death cell membranes ceramides Ceramides - pharmacology cGMP-dependent protein kinase diabetes endothelial cells energy Eryptosis erythrocytes Erythrocytes - physiology erythropoiesis erythropoietin fever glucose 6-phosphate glucose-6-phosphate 1-dehydrogenase hemoglobinuria hemolysis hepatolenticular degeneration Humans iron Malaria Mice Models, Biological nitric oxide non-specific protein-tyrosine kinase nutrient deficiencies oxidative stress phosphates phospholipids platelet-activating factor Red blood cell renal failure Sepsis sepsis (infection) shrinkage sickle cell anemia Signal Transduction - drug effects Signal Transduction - physiology taurine thalassemia xenobiotics Xenobiotics - pharmacology |
title | Killing me softly – Suicidal erythrocyte death |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Killing%20me%20softly%20%E2%80%93%20Suicidal%20erythrocyte%20death&rft.jtitle=The%20international%20journal%20of%20biochemistry%20&%20cell%20biology&rft.au=Lang,%20Elisabeth&rft.date=2012-08-01&rft.volume=44&rft.issue=8&rft.spage=1236&rft.epage=1243&rft.pages=1236-1243&rft.issn=1357-2725&rft.eissn=1878-5875&rft_id=info:doi/10.1016/j.biocel.2012.04.019&rft_dat=%3Cproquest_cross%3E1021450825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1021450825&rft_id=info:pmid/22561748&rft_els_id=S1357272512001446&rfr_iscdi=true |