Killing me softly – Suicidal erythrocyte death

Similar to nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is characterized by cell shrinkage, cell membrane blebbing and cell membrane phospholipid scrambling. Eryptotic cells are removed and thus prevented from undergoing hemolysis. Eryptosis is stimulated by Ca2+ foll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of biochemistry & cell biology 2012-08, Vol.44 (8), p.1236-1243
Hauptverfasser: Lang, Elisabeth, Qadri, Syed M., Lang, Florian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1243
container_issue 8
container_start_page 1236
container_title The international journal of biochemistry & cell biology
container_volume 44
creator Lang, Elisabeth
Qadri, Syed M.
Lang, Florian
description Similar to nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is characterized by cell shrinkage, cell membrane blebbing and cell membrane phospholipid scrambling. Eryptotic cells are removed and thus prevented from undergoing hemolysis. Eryptosis is stimulated by Ca2+ following Ca2+ entry through unspecific cation channels. Ca2+ sensitivity is enhanced by ceramide, a product of acid sphingomyelinase. Eryptosis is triggered by hyperosmolarity, oxidative stress, energy depletion, hyperthermia and a wide variety of xenobiotics and endogenous substances. Eryptosis is inhibited by nitric oxide, catecholamines and a variety of further small molecules. Erythropoietin counteracts eryptosis in part by inhibiting the Ca2+-permeable cation channels but by the same token may foster formation of erythrocytes, which are particularly sensitive to eryptotic stimuli. Eryptosis is triggered in several clinical conditions such as iron deficiency, diabetes, renal insufficiency, myelodysplastic syndrome, phosphate depletion, sepsis, haemolytic uremic syndrome, mycoplasma infection, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase-(G6PD)-deficiency, hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria, and Wilson's disease. Enhanced eryptosis is observed in mice with deficient annexin 7, cGMP-dependent protein kinase type I (cGKI), AMP-activated protein kinase AMPK, anion exchanger AE1, adenomatous polyposis coli APC and Klotho as well as in mouse models of sickle cell anemia and thalassemia. Eryptosis is decreased in mice with deficient phosphoinositide dependent kinase PDK1, platelet activating factor receptor, transient receptor potential channel TRPC6, janus kinase JAK3 or taurine transporter TAUT. If accelerated eryptosis is not compensated by enhanced erythropoiesis, clinically relevant anemia develops. Eryptotic erythrocytes may further bind to endothelial cells and thus impede microcirculation.
doi_str_mv 10.1016/j.biocel.2012.04.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1021450825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1357272512001446</els_id><sourcerecordid>1021450825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-91c76f4db0ddc5c4021bbb656ac3edb2c56fd425b7e3e885425c4f5fed08aa823</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhy0EoqXwBggysiTYju24CxKq-CcqMZTOlmNfWldpU-wEqRvvwBvyJLgKMDLdDd_97u5D6JzgjGAirldZ6RoDdUYxoRlmGSbjAzQkspAplwU_jH3Oi5QWlA_QSQgrjDHhND9GA0q5IAWTQ4SfXV27zSJZQxKaqq13ydfHZzLrnHFW1wn4Xbv0jdm1kFjQ7fIUHVW6DnD2U0dofn_3OnlMpy8PT5PbaWpyKdp0TEwhKmZLbK3hhmFKyrIUXGiTgy2p4aKyjPKygByk5LE1rOIVWCy1ljQfoas-d-ubtw5Cq9YuxHdrvYGmC4rERMaxpDyirEeNb0LwUKmtd2vtdxFSe1dqpXpXau9KYaaiqzh28bOhK9dg_4Z-5UTgsgcq3Si98C6o-SwmiChSEsFwJG56AqKJdwdeBeNgY8A6D6ZVtnH_3_ANm9mFuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1021450825</pqid></control><display><type>article</type><title>Killing me softly – Suicidal erythrocyte death</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lang, Elisabeth ; Qadri, Syed M. ; Lang, Florian</creator><creatorcontrib>Lang, Elisabeth ; Qadri, Syed M. ; Lang, Florian</creatorcontrib><description>Similar to nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is characterized by cell shrinkage, cell membrane blebbing and cell membrane phospholipid scrambling. Eryptotic cells are removed and thus prevented from undergoing hemolysis. Eryptosis is stimulated by Ca2+ following Ca2+ entry through unspecific cation channels. Ca2+ sensitivity is enhanced by ceramide, a product of acid sphingomyelinase. Eryptosis is triggered by hyperosmolarity, oxidative stress, energy depletion, hyperthermia and a wide variety of xenobiotics and endogenous substances. Eryptosis is inhibited by nitric oxide, catecholamines and a variety of further small molecules. Erythropoietin counteracts eryptosis in part by inhibiting the Ca2+-permeable cation channels but by the same token may foster formation of erythrocytes, which are particularly sensitive to eryptotic stimuli. Eryptosis is triggered in several clinical conditions such as iron deficiency, diabetes, renal insufficiency, myelodysplastic syndrome, phosphate depletion, sepsis, haemolytic uremic syndrome, mycoplasma infection, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase-(G6PD)-deficiency, hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria, and Wilson's disease. Enhanced eryptosis is observed in mice with deficient annexin 7, cGMP-dependent protein kinase type I (cGKI), AMP-activated protein kinase AMPK, anion exchanger AE1, adenomatous polyposis coli APC and Klotho as well as in mouse models of sickle cell anemia and thalassemia. Eryptosis is decreased in mice with deficient phosphoinositide dependent kinase PDK1, platelet activating factor receptor, transient receptor potential channel TRPC6, janus kinase JAK3 or taurine transporter TAUT. If accelerated eryptosis is not compensated by enhanced erythropoiesis, clinically relevant anemia develops. Eryptotic erythrocytes may further bind to endothelial cells and thus impede microcirculation.</description><identifier>ISSN: 1357-2725</identifier><identifier>EISSN: 1878-5875</identifier><identifier>DOI: 10.1016/j.biocel.2012.04.019</identifier><identifier>PMID: 22561748</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>AMP-activated protein kinase ; Anemia ; animal models ; Animals ; Apoptosis ; Apoptosis - physiology ; calcium ; Calcium - metabolism ; Calcium - pharmacology ; catecholamines ; cell death ; cell membranes ; ceramides ; Ceramides - pharmacology ; cGMP-dependent protein kinase ; diabetes ; endothelial cells ; energy ; Eryptosis ; erythrocytes ; Erythrocytes - physiology ; erythropoiesis ; erythropoietin ; fever ; glucose 6-phosphate ; glucose-6-phosphate 1-dehydrogenase ; hemoglobinuria ; hemolysis ; hepatolenticular degeneration ; Humans ; iron ; Malaria ; Mice ; Models, Biological ; nitric oxide ; non-specific protein-tyrosine kinase ; nutrient deficiencies ; oxidative stress ; phosphates ; phospholipids ; platelet-activating factor ; Red blood cell ; renal failure ; Sepsis ; sepsis (infection) ; shrinkage ; sickle cell anemia ; Signal Transduction - drug effects ; Signal Transduction - physiology ; taurine ; thalassemia ; xenobiotics ; Xenobiotics - pharmacology</subject><ispartof>The international journal of biochemistry &amp; cell biology, 2012-08, Vol.44 (8), p.1236-1243</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-91c76f4db0ddc5c4021bbb656ac3edb2c56fd425b7e3e885425c4f5fed08aa823</citedby><cites>FETCH-LOGICAL-c386t-91c76f4db0ddc5c4021bbb656ac3edb2c56fd425b7e3e885425c4f5fed08aa823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biocel.2012.04.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22561748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lang, Elisabeth</creatorcontrib><creatorcontrib>Qadri, Syed M.</creatorcontrib><creatorcontrib>Lang, Florian</creatorcontrib><title>Killing me softly – Suicidal erythrocyte death</title><title>The international journal of biochemistry &amp; cell biology</title><addtitle>Int J Biochem Cell Biol</addtitle><description>Similar to nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is characterized by cell shrinkage, cell membrane blebbing and cell membrane phospholipid scrambling. Eryptotic cells are removed and thus prevented from undergoing hemolysis. Eryptosis is stimulated by Ca2+ following Ca2+ entry through unspecific cation channels. Ca2+ sensitivity is enhanced by ceramide, a product of acid sphingomyelinase. Eryptosis is triggered by hyperosmolarity, oxidative stress, energy depletion, hyperthermia and a wide variety of xenobiotics and endogenous substances. Eryptosis is inhibited by nitric oxide, catecholamines and a variety of further small molecules. Erythropoietin counteracts eryptosis in part by inhibiting the Ca2+-permeable cation channels but by the same token may foster formation of erythrocytes, which are particularly sensitive to eryptotic stimuli. Eryptosis is triggered in several clinical conditions such as iron deficiency, diabetes, renal insufficiency, myelodysplastic syndrome, phosphate depletion, sepsis, haemolytic uremic syndrome, mycoplasma infection, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase-(G6PD)-deficiency, hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria, and Wilson's disease. Enhanced eryptosis is observed in mice with deficient annexin 7, cGMP-dependent protein kinase type I (cGKI), AMP-activated protein kinase AMPK, anion exchanger AE1, adenomatous polyposis coli APC and Klotho as well as in mouse models of sickle cell anemia and thalassemia. Eryptosis is decreased in mice with deficient phosphoinositide dependent kinase PDK1, platelet activating factor receptor, transient receptor potential channel TRPC6, janus kinase JAK3 or taurine transporter TAUT. If accelerated eryptosis is not compensated by enhanced erythropoiesis, clinically relevant anemia develops. Eryptotic erythrocytes may further bind to endothelial cells and thus impede microcirculation.</description><subject>AMP-activated protein kinase</subject><subject>Anemia</subject><subject>animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium - pharmacology</subject><subject>catecholamines</subject><subject>cell death</subject><subject>cell membranes</subject><subject>ceramides</subject><subject>Ceramides - pharmacology</subject><subject>cGMP-dependent protein kinase</subject><subject>diabetes</subject><subject>endothelial cells</subject><subject>energy</subject><subject>Eryptosis</subject><subject>erythrocytes</subject><subject>Erythrocytes - physiology</subject><subject>erythropoiesis</subject><subject>erythropoietin</subject><subject>fever</subject><subject>glucose 6-phosphate</subject><subject>glucose-6-phosphate 1-dehydrogenase</subject><subject>hemoglobinuria</subject><subject>hemolysis</subject><subject>hepatolenticular degeneration</subject><subject>Humans</subject><subject>iron</subject><subject>Malaria</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>nitric oxide</subject><subject>non-specific protein-tyrosine kinase</subject><subject>nutrient deficiencies</subject><subject>oxidative stress</subject><subject>phosphates</subject><subject>phospholipids</subject><subject>platelet-activating factor</subject><subject>Red blood cell</subject><subject>renal failure</subject><subject>Sepsis</subject><subject>sepsis (infection)</subject><subject>shrinkage</subject><subject>sickle cell anemia</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>taurine</subject><subject>thalassemia</subject><subject>xenobiotics</subject><subject>Xenobiotics - pharmacology</subject><issn>1357-2725</issn><issn>1878-5875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kL9OwzAQhy0EoqXwBggysiTYju24CxKq-CcqMZTOlmNfWldpU-wEqRvvwBvyJLgKMDLdDd_97u5D6JzgjGAirldZ6RoDdUYxoRlmGSbjAzQkspAplwU_jH3Oi5QWlA_QSQgrjDHhND9GA0q5IAWTQ4SfXV27zSJZQxKaqq13ydfHZzLrnHFW1wn4Xbv0jdm1kFjQ7fIUHVW6DnD2U0dofn_3OnlMpy8PT5PbaWpyKdp0TEwhKmZLbK3hhmFKyrIUXGiTgy2p4aKyjPKygByk5LE1rOIVWCy1ljQfoas-d-ubtw5Cq9YuxHdrvYGmC4rERMaxpDyirEeNb0LwUKmtd2vtdxFSe1dqpXpXau9KYaaiqzh28bOhK9dg_4Z-5UTgsgcq3Si98C6o-SwmiChSEsFwJG56AqKJdwdeBeNgY8A6D6ZVtnH_3_ANm9mFuQ</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Lang, Elisabeth</creator><creator>Qadri, Syed M.</creator><creator>Lang, Florian</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120801</creationdate><title>Killing me softly – Suicidal erythrocyte death</title><author>Lang, Elisabeth ; Qadri, Syed M. ; Lang, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-91c76f4db0ddc5c4021bbb656ac3edb2c56fd425b7e3e885425c4f5fed08aa823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AMP-activated protein kinase</topic><topic>Anemia</topic><topic>animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium - pharmacology</topic><topic>catecholamines</topic><topic>cell death</topic><topic>cell membranes</topic><topic>ceramides</topic><topic>Ceramides - pharmacology</topic><topic>cGMP-dependent protein kinase</topic><topic>diabetes</topic><topic>endothelial cells</topic><topic>energy</topic><topic>Eryptosis</topic><topic>erythrocytes</topic><topic>Erythrocytes - physiology</topic><topic>erythropoiesis</topic><topic>erythropoietin</topic><topic>fever</topic><topic>glucose 6-phosphate</topic><topic>glucose-6-phosphate 1-dehydrogenase</topic><topic>hemoglobinuria</topic><topic>hemolysis</topic><topic>hepatolenticular degeneration</topic><topic>Humans</topic><topic>iron</topic><topic>Malaria</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>nitric oxide</topic><topic>non-specific protein-tyrosine kinase</topic><topic>nutrient deficiencies</topic><topic>oxidative stress</topic><topic>phosphates</topic><topic>phospholipids</topic><topic>platelet-activating factor</topic><topic>Red blood cell</topic><topic>renal failure</topic><topic>Sepsis</topic><topic>sepsis (infection)</topic><topic>shrinkage</topic><topic>sickle cell anemia</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>taurine</topic><topic>thalassemia</topic><topic>xenobiotics</topic><topic>Xenobiotics - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, Elisabeth</creatorcontrib><creatorcontrib>Qadri, Syed M.</creatorcontrib><creatorcontrib>Lang, Florian</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The international journal of biochemistry &amp; cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lang, Elisabeth</au><au>Qadri, Syed M.</au><au>Lang, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Killing me softly – Suicidal erythrocyte death</atitle><jtitle>The international journal of biochemistry &amp; cell biology</jtitle><addtitle>Int J Biochem Cell Biol</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>44</volume><issue>8</issue><spage>1236</spage><epage>1243</epage><pages>1236-1243</pages><issn>1357-2725</issn><eissn>1878-5875</eissn><abstract>Similar to nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is characterized by cell shrinkage, cell membrane blebbing and cell membrane phospholipid scrambling. Eryptotic cells are removed and thus prevented from undergoing hemolysis. Eryptosis is stimulated by Ca2+ following Ca2+ entry through unspecific cation channels. Ca2+ sensitivity is enhanced by ceramide, a product of acid sphingomyelinase. Eryptosis is triggered by hyperosmolarity, oxidative stress, energy depletion, hyperthermia and a wide variety of xenobiotics and endogenous substances. Eryptosis is inhibited by nitric oxide, catecholamines and a variety of further small molecules. Erythropoietin counteracts eryptosis in part by inhibiting the Ca2+-permeable cation channels but by the same token may foster formation of erythrocytes, which are particularly sensitive to eryptotic stimuli. Eryptosis is triggered in several clinical conditions such as iron deficiency, diabetes, renal insufficiency, myelodysplastic syndrome, phosphate depletion, sepsis, haemolytic uremic syndrome, mycoplasma infection, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase-(G6PD)-deficiency, hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria, and Wilson's disease. Enhanced eryptosis is observed in mice with deficient annexin 7, cGMP-dependent protein kinase type I (cGKI), AMP-activated protein kinase AMPK, anion exchanger AE1, adenomatous polyposis coli APC and Klotho as well as in mouse models of sickle cell anemia and thalassemia. Eryptosis is decreased in mice with deficient phosphoinositide dependent kinase PDK1, platelet activating factor receptor, transient receptor potential channel TRPC6, janus kinase JAK3 or taurine transporter TAUT. If accelerated eryptosis is not compensated by enhanced erythropoiesis, clinically relevant anemia develops. Eryptotic erythrocytes may further bind to endothelial cells and thus impede microcirculation.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>22561748</pmid><doi>10.1016/j.biocel.2012.04.019</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1357-2725
ispartof The international journal of biochemistry & cell biology, 2012-08, Vol.44 (8), p.1236-1243
issn 1357-2725
1878-5875
language eng
recordid cdi_proquest_miscellaneous_1021450825
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects AMP-activated protein kinase
Anemia
animal models
Animals
Apoptosis
Apoptosis - physiology
calcium
Calcium - metabolism
Calcium - pharmacology
catecholamines
cell death
cell membranes
ceramides
Ceramides - pharmacology
cGMP-dependent protein kinase
diabetes
endothelial cells
energy
Eryptosis
erythrocytes
Erythrocytes - physiology
erythropoiesis
erythropoietin
fever
glucose 6-phosphate
glucose-6-phosphate 1-dehydrogenase
hemoglobinuria
hemolysis
hepatolenticular degeneration
Humans
iron
Malaria
Mice
Models, Biological
nitric oxide
non-specific protein-tyrosine kinase
nutrient deficiencies
oxidative stress
phosphates
phospholipids
platelet-activating factor
Red blood cell
renal failure
Sepsis
sepsis (infection)
shrinkage
sickle cell anemia
Signal Transduction - drug effects
Signal Transduction - physiology
taurine
thalassemia
xenobiotics
Xenobiotics - pharmacology
title Killing me softly – Suicidal erythrocyte death
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Killing%20me%20softly%20%E2%80%93%20Suicidal%20erythrocyte%20death&rft.jtitle=The%20international%20journal%20of%20biochemistry%20&%20cell%20biology&rft.au=Lang,%20Elisabeth&rft.date=2012-08-01&rft.volume=44&rft.issue=8&rft.spage=1236&rft.epage=1243&rft.pages=1236-1243&rft.issn=1357-2725&rft.eissn=1878-5875&rft_id=info:doi/10.1016/j.biocel.2012.04.019&rft_dat=%3Cproquest_cross%3E1021450825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1021450825&rft_id=info:pmid/22561748&rft_els_id=S1357272512001446&rfr_iscdi=true