Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates

Conjugating drugs to therapeutic antibodies is a promising strategy to increase their therapeutic efficacy. Shen et al. show that the local chemical environment of the conjugation site influences the in vivo stability and efficacy of the modified antibodies. The reactive thiol in cysteine is used fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2012-02, Vol.30 (2), p.184-189
Hauptverfasser: Shen, Ben-Quan, Xu, Keyang, Liu, Luna, Raab, Helga, Bhakta, Sunil, Kenrick, Margaret, Parsons-Reponte, Kathryn L, Tien, Janet, Yu, Shang-Fan, Mai, Elaine, Li, Dongwei, Tibbitts, Jay, Baudys, Jakub, Saad, Ola M, Scales, Suzie J, McDonald, Paul J, Hass, Philip E, Eigenbrot, Charles, Nguyen, Trung, Solis, Willy A, Fuji, Reina N, Flagella, Kelly M, Patel, Darshana, Spencer, Susan D, Khawli, Leslie A, Ebens, Allen, Wong, Wai Lee, Vandlen, Richard, Kaur, Surinder, Sliwkowski, Mark X, Scheller, Richard H, Polakis, Paul, Junutula, Jagath R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conjugating drugs to therapeutic antibodies is a promising strategy to increase their therapeutic efficacy. Shen et al. show that the local chemical environment of the conjugation site influences the in vivo stability and efficacy of the modified antibodies. The reactive thiol in cysteine is used for coupling maleimide linkers in the generation of antibody conjugates. To assess the impact of the conjugation site, we engineered cysteines into a therapeutic HER2/neu antibody at three sites differing in solvent accessibility and local charge. The highly solvent-accessible site rapidly lost conjugated thiol-reactive linkers in plasma owing to maleimide exchange with reactive thiols in albumin, free cysteine or glutathione. In contrast, a partially accessible site with a positively charged environment promoted hydrolysis of the succinimide ring in the linker, thereby preventing this exchange reaction. The site with partial solvent-accessibility and neutral charge displayed both properties. In a mouse mammary tumor model, the stability and therapeutic activity of the antibody conjugate were affected positively by succinimide ring hydrolysis and negatively by maleimide exchange with thiol-reactive constituents in plasma. Thus, the chemical and structural dynamics of the conjugation site can influence antibody conjugate performance by modulating the stability of the antibody-linker interface.
ISSN:1087-0156
1546-1696
DOI:10.1038/nbt.2108