Comparison of a multiplexed MassARRAY system with real-time allele-specific PCR technology for genotyping of methicillin-resistant Staphylococcus aureus

The Sequenom MassARRAY iPLEX single-nucleotide polymorphism (SNP) typing platform uses matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) coupled with single-base extension PCR for high-throughput multiplex SNP detection. In this study, we investigated the us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical microbiology and infection 2011-12, Vol.17 (12), p.1804-1810
Hauptverfasser: Syrmis, M.W., Moser, R.J., Whiley, D.M., Vaska, V., Coombs, G.W., Nissen, M.D., Sloots, T.P., Nimmo, G.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Sequenom MassARRAY iPLEX single-nucleotide polymorphism (SNP) typing platform uses matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) coupled with single-base extension PCR for high-throughput multiplex SNP detection. In this study, we investigated the use of iPLEX MassARRAY technology for methicillin-resistant Staphylococcus aureus (MRSA) genotyping. A 16-plex MassARRAY iPLEX GOLD assay (MRSA-iPLEX) was developed that targets a set of informative SNPs and binary genes for MRSA characterization. The method was evaluated with 147 MRSA isolates, and the results were compared with those of an established SYBR Green-based real-time PCR system utilizing the same SNP–binary markers. A total of 2352 markers belonging to 44 SNP–binary profiles were analysed by both real-time PCR and MRSA-iPLEX. With real-time PCR as the reference standard, MRSA-iPLEX correctly assigned 2298 of the 2352 (97.7%) markers. Sequence variation in the MRSA-iPLEX primer targets accounted for the majority of MRSA-iPLEX erroneous results, highlighting the importance of primer target selection. MRSA-iPLEX provided optimal throughput for MRSA genotyping, and was, on a reagent basis, more cost-effective than the real-time PCR methods. The 16-plex MRSA-iPLEX is a suitable alternative to SYBR Green-based real-time PCR typing of major sequence types and clonal complexes of MRSA.
ISSN:1198-743X
1469-0691
DOI:10.1111/j.1469-0691.2011.03521.x