Multi-Layered hypertrophied MEE formation by microtubule disruption via GEF-H1/RhoA/ROCK signaling pathway

Background: Formation of the secondary palate is complex and disturbance during palatal fusion may result in cleft palate. The processes of adhesion, intercalation, and disappearance of medial edge epithelia (MEE) are characterized by morphological changes requiring dynamic cytoskeletal rearrangemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental dynamics 2012-07, Vol.241 (7), p.1169-1182
Hauptverfasser: Kitase, Yukiko, Shuler, Charles F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1182
container_issue 7
container_start_page 1169
container_title Developmental dynamics
container_volume 241
creator Kitase, Yukiko
Shuler, Charles F.
description Background: Formation of the secondary palate is complex and disturbance during palatal fusion may result in cleft palate. The processes of adhesion, intercalation, and disappearance of medial edge epithelia (MEE) are characterized by morphological changes requiring dynamic cytoskeletal rearrangement. Microtubules are one of the cytoskeletal elements involved in maintenance of cell morphology. Microtubule‐disrupting drugs have been reported to cause craniofacial malformations including cleft palate. The mechanisms underlying the failure of palatal fusion remain poorly understood. We evaluated the effect of nocodazole (NDZ), a drug that disrupts microtubules, on palatal fusion in organ culture. Results: NDZ caused failure of palatal fusion due to the induction of a multi‐layered hypertrophied MEE in the mid‐region of the secondary palatal shelves. Microtubule disruption increased RhoA activity and stress fiber formation. Pharmacological inhibition of the RhoA/ROCK pathway blocked multi‐layered MEE formation. Partial prevention of hypertrophied MEE was observed with Y27632 and cytochalasin, but not with blebbistatin. NDZ induced re‐localization of GEF‐H1 into cytoplasm from cell–cell junctions. Conclusions: The present study provided evidence that the GEF‐H1/RhoA/ROCK pathway plays a pivotal role in linking microtubule disassembly to the remodeling of the actin cytoskeleton, which resulted in a multi‐layered hypertrophied MEE and failure of palatal fusion. Developmental Dynamics 241:1169–1182, 2012. © 2012 Wiley Periodicals, Inc. Key findings: Microtubule disassembly causes failure of palatal fusion due to multi‐layered hypertrophied MEE formation in the middle region of the palatal shelves. Nocodazole activates RhoA/ROCK signaling pathway and stress fiber formation in MEE Multi‐layered hypertrophied MEE formation is not dependent on TGF‐β/Smad signaling. GEF‐H1/RhoA/ROCK signaling pathway is involved in multi‐layred hypertrophied MEE formation.
doi_str_mv 10.1002/dvdy.23800
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1020828299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3958028661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4970-1a0b7a9787243fbb7098a8acb5378bd55d0c57bed14415fe2f9b202db4ca24d23</originalsourceid><addsrcrecordid>eNp9kUtP3DAURq0KVCjtpj-gisSmqhTGz9hZonkiBqhQW9SVZccO4yGZpHYC5N_jYYAFi658LZ97dH0_AL4ieIIgxCNzb4YTTASEH8AhgjlPIeJ8b1szkQoixAH4FMIaQigyij6CA4xZxhgVh2B90VedS5dqsN6aZDW01ne-aVcu3i6m06RsfK0612wSPSS1K3zT9bqvbGJc8H37_HLvVDKfztIFGl2vmtPR9dX4PAnudqMqt7lNWtWtHtTwGeyXqgr2y8t5BH7Ppr_Gi3R5NT8bny7TguYcpkhBzVXOBceUlFpzmAslVKEZ4UIbxgwsGNfWIEoRKy0uc40hNpoWClODyRH4vvO2vvnX29DJ2oXCVpXa2KYPEkEMBRY4zyN6_A5dN72PY0eKZ5lAFBESqR87Kn4-BG9L2XpXKz9EldwmILcJyOcEIvztRdnr2po39HXlEUA74MFVdviPSk7-TP6-StNdjwudfXzrUf5OZpxwJm8u5_InY2KSLW7kjDwBe2-fWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766814133</pqid></control><display><type>article</type><title>Multi-Layered hypertrophied MEE formation by microtubule disruption via GEF-H1/RhoA/ROCK signaling pathway</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Kitase, Yukiko ; Shuler, Charles F.</creator><creatorcontrib>Kitase, Yukiko ; Shuler, Charles F.</creatorcontrib><description>Background: Formation of the secondary palate is complex and disturbance during palatal fusion may result in cleft palate. The processes of adhesion, intercalation, and disappearance of medial edge epithelia (MEE) are characterized by morphological changes requiring dynamic cytoskeletal rearrangement. Microtubules are one of the cytoskeletal elements involved in maintenance of cell morphology. Microtubule‐disrupting drugs have been reported to cause craniofacial malformations including cleft palate. The mechanisms underlying the failure of palatal fusion remain poorly understood. We evaluated the effect of nocodazole (NDZ), a drug that disrupts microtubules, on palatal fusion in organ culture. Results: NDZ caused failure of palatal fusion due to the induction of a multi‐layered hypertrophied MEE in the mid‐region of the secondary palatal shelves. Microtubule disruption increased RhoA activity and stress fiber formation. Pharmacological inhibition of the RhoA/ROCK pathway blocked multi‐layered MEE formation. Partial prevention of hypertrophied MEE was observed with Y27632 and cytochalasin, but not with blebbistatin. NDZ induced re‐localization of GEF‐H1 into cytoplasm from cell–cell junctions. Conclusions: The present study provided evidence that the GEF‐H1/RhoA/ROCK pathway plays a pivotal role in linking microtubule disassembly to the remodeling of the actin cytoskeleton, which resulted in a multi‐layered hypertrophied MEE and failure of palatal fusion. Developmental Dynamics 241:1169–1182, 2012. © 2012 Wiley Periodicals, Inc. Key findings: Microtubule disassembly causes failure of palatal fusion due to multi‐layered hypertrophied MEE formation in the middle region of the palatal shelves. Nocodazole activates RhoA/ROCK signaling pathway and stress fiber formation in MEE Multi‐layered hypertrophied MEE formation is not dependent on TGF‐β/Smad signaling. GEF‐H1/RhoA/ROCK signaling pathway is involved in multi‐layred hypertrophied MEE formation.</description><identifier>ISSN: 1058-8388</identifier><identifier>EISSN: 1097-0177</identifier><identifier>DOI: 10.1002/dvdy.23800</identifier><identifier>PMID: 22565548</identifier><language>eng</language><publisher>New York: Wiley-Liss, Inc</publisher><subject>Animals ; Blotting, Western ; Cell Proliferation - drug effects ; Female ; Fluorescent Antibody Technique ; GEF-H1/RhoA/ROCK ; Guanine Nucleotide Exchange Factors ; Hypertrophy ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; microtubule ; Microtubules - drug effects ; Microtubules - metabolism ; multi-layered hypertrophied MEE ; Nocodazole - pharmacology ; Organ Culture Techniques ; palatal fusion ; Palate - drug effects ; Palate - embryology ; Palate - metabolism ; Pregnancy ; Proto-Oncogene Proteins ; Real-Time Polymerase Chain Reaction ; Rho Guanine Nucleotide Exchange Factors ; rhoA GTP-Binding Protein - genetics ; rhoA GTP-Binding Protein - metabolism ; Signal Transduction - drug effects ; Transforming Growth Factor beta - genetics ; Transforming Growth Factor beta - metabolism</subject><ispartof>Developmental dynamics, 2012-07, Vol.241 (7), p.1169-1182</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4970-1a0b7a9787243fbb7098a8acb5378bd55d0c57bed14415fe2f9b202db4ca24d23</citedby><cites>FETCH-LOGICAL-c4970-1a0b7a9787243fbb7098a8acb5378bd55d0c57bed14415fe2f9b202db4ca24d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fdvdy.23800$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fdvdy.23800$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22565548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kitase, Yukiko</creatorcontrib><creatorcontrib>Shuler, Charles F.</creatorcontrib><title>Multi-Layered hypertrophied MEE formation by microtubule disruption via GEF-H1/RhoA/ROCK signaling pathway</title><title>Developmental dynamics</title><addtitle>Dev. Dyn</addtitle><description>Background: Formation of the secondary palate is complex and disturbance during palatal fusion may result in cleft palate. The processes of adhesion, intercalation, and disappearance of medial edge epithelia (MEE) are characterized by morphological changes requiring dynamic cytoskeletal rearrangement. Microtubules are one of the cytoskeletal elements involved in maintenance of cell morphology. Microtubule‐disrupting drugs have been reported to cause craniofacial malformations including cleft palate. The mechanisms underlying the failure of palatal fusion remain poorly understood. We evaluated the effect of nocodazole (NDZ), a drug that disrupts microtubules, on palatal fusion in organ culture. Results: NDZ caused failure of palatal fusion due to the induction of a multi‐layered hypertrophied MEE in the mid‐region of the secondary palatal shelves. Microtubule disruption increased RhoA activity and stress fiber formation. Pharmacological inhibition of the RhoA/ROCK pathway blocked multi‐layered MEE formation. Partial prevention of hypertrophied MEE was observed with Y27632 and cytochalasin, but not with blebbistatin. NDZ induced re‐localization of GEF‐H1 into cytoplasm from cell–cell junctions. Conclusions: The present study provided evidence that the GEF‐H1/RhoA/ROCK pathway plays a pivotal role in linking microtubule disassembly to the remodeling of the actin cytoskeleton, which resulted in a multi‐layered hypertrophied MEE and failure of palatal fusion. Developmental Dynamics 241:1169–1182, 2012. © 2012 Wiley Periodicals, Inc. Key findings: Microtubule disassembly causes failure of palatal fusion due to multi‐layered hypertrophied MEE formation in the middle region of the palatal shelves. Nocodazole activates RhoA/ROCK signaling pathway and stress fiber formation in MEE Multi‐layered hypertrophied MEE formation is not dependent on TGF‐β/Smad signaling. GEF‐H1/RhoA/ROCK signaling pathway is involved in multi‐layred hypertrophied MEE formation.</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>Cell Proliferation - drug effects</subject><subject>Female</subject><subject>Fluorescent Antibody Technique</subject><subject>GEF-H1/RhoA/ROCK</subject><subject>Guanine Nucleotide Exchange Factors</subject><subject>Hypertrophy</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>microtubule</subject><subject>Microtubules - drug effects</subject><subject>Microtubules - metabolism</subject><subject>multi-layered hypertrophied MEE</subject><subject>Nocodazole - pharmacology</subject><subject>Organ Culture Techniques</subject><subject>palatal fusion</subject><subject>Palate - drug effects</subject><subject>Palate - embryology</subject><subject>Palate - metabolism</subject><subject>Pregnancy</subject><subject>Proto-Oncogene Proteins</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Rho Guanine Nucleotide Exchange Factors</subject><subject>rhoA GTP-Binding Protein - genetics</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Transforming Growth Factor beta - genetics</subject><subject>Transforming Growth Factor beta - metabolism</subject><issn>1058-8388</issn><issn>1097-0177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtP3DAURq0KVCjtpj-gisSmqhTGz9hZonkiBqhQW9SVZccO4yGZpHYC5N_jYYAFi658LZ97dH0_AL4ieIIgxCNzb4YTTASEH8AhgjlPIeJ8b1szkQoixAH4FMIaQigyij6CA4xZxhgVh2B90VedS5dqsN6aZDW01ne-aVcu3i6m06RsfK0612wSPSS1K3zT9bqvbGJc8H37_HLvVDKfztIFGl2vmtPR9dX4PAnudqMqt7lNWtWtHtTwGeyXqgr2y8t5BH7Ppr_Gi3R5NT8bny7TguYcpkhBzVXOBceUlFpzmAslVKEZ4UIbxgwsGNfWIEoRKy0uc40hNpoWClODyRH4vvO2vvnX29DJ2oXCVpXa2KYPEkEMBRY4zyN6_A5dN72PY0eKZ5lAFBESqR87Kn4-BG9L2XpXKz9EldwmILcJyOcEIvztRdnr2po39HXlEUA74MFVdviPSk7-TP6-StNdjwudfXzrUf5OZpxwJm8u5_InY2KSLW7kjDwBe2-fWA</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Kitase, Yukiko</creator><creator>Shuler, Charles F.</creator><general>Wiley-Liss, Inc</general><general>Wiley‐Liss, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201207</creationdate><title>Multi-Layered hypertrophied MEE formation by microtubule disruption via GEF-H1/RhoA/ROCK signaling pathway</title><author>Kitase, Yukiko ; Shuler, Charles F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4970-1a0b7a9787243fbb7098a8acb5378bd55d0c57bed14415fe2f9b202db4ca24d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>Cell Proliferation - drug effects</topic><topic>Female</topic><topic>Fluorescent Antibody Technique</topic><topic>GEF-H1/RhoA/ROCK</topic><topic>Guanine Nucleotide Exchange Factors</topic><topic>Hypertrophy</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>microtubule</topic><topic>Microtubules - drug effects</topic><topic>Microtubules - metabolism</topic><topic>multi-layered hypertrophied MEE</topic><topic>Nocodazole - pharmacology</topic><topic>Organ Culture Techniques</topic><topic>palatal fusion</topic><topic>Palate - drug effects</topic><topic>Palate - embryology</topic><topic>Palate - metabolism</topic><topic>Pregnancy</topic><topic>Proto-Oncogene Proteins</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Rho Guanine Nucleotide Exchange Factors</topic><topic>rhoA GTP-Binding Protein - genetics</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Transforming Growth Factor beta - genetics</topic><topic>Transforming Growth Factor beta - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitase, Yukiko</creatorcontrib><creatorcontrib>Shuler, Charles F.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitase, Yukiko</au><au>Shuler, Charles F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Layered hypertrophied MEE formation by microtubule disruption via GEF-H1/RhoA/ROCK signaling pathway</atitle><jtitle>Developmental dynamics</jtitle><addtitle>Dev. Dyn</addtitle><date>2012-07</date><risdate>2012</risdate><volume>241</volume><issue>7</issue><spage>1169</spage><epage>1182</epage><pages>1169-1182</pages><issn>1058-8388</issn><eissn>1097-0177</eissn><abstract>Background: Formation of the secondary palate is complex and disturbance during palatal fusion may result in cleft palate. The processes of adhesion, intercalation, and disappearance of medial edge epithelia (MEE) are characterized by morphological changes requiring dynamic cytoskeletal rearrangement. Microtubules are one of the cytoskeletal elements involved in maintenance of cell morphology. Microtubule‐disrupting drugs have been reported to cause craniofacial malformations including cleft palate. The mechanisms underlying the failure of palatal fusion remain poorly understood. We evaluated the effect of nocodazole (NDZ), a drug that disrupts microtubules, on palatal fusion in organ culture. Results: NDZ caused failure of palatal fusion due to the induction of a multi‐layered hypertrophied MEE in the mid‐region of the secondary palatal shelves. Microtubule disruption increased RhoA activity and stress fiber formation. Pharmacological inhibition of the RhoA/ROCK pathway blocked multi‐layered MEE formation. Partial prevention of hypertrophied MEE was observed with Y27632 and cytochalasin, but not with blebbistatin. NDZ induced re‐localization of GEF‐H1 into cytoplasm from cell–cell junctions. Conclusions: The present study provided evidence that the GEF‐H1/RhoA/ROCK pathway plays a pivotal role in linking microtubule disassembly to the remodeling of the actin cytoskeleton, which resulted in a multi‐layered hypertrophied MEE and failure of palatal fusion. Developmental Dynamics 241:1169–1182, 2012. © 2012 Wiley Periodicals, Inc. Key findings: Microtubule disassembly causes failure of palatal fusion due to multi‐layered hypertrophied MEE formation in the middle region of the palatal shelves. Nocodazole activates RhoA/ROCK signaling pathway and stress fiber formation in MEE Multi‐layered hypertrophied MEE formation is not dependent on TGF‐β/Smad signaling. GEF‐H1/RhoA/ROCK signaling pathway is involved in multi‐layred hypertrophied MEE formation.</abstract><cop>New York</cop><pub>Wiley-Liss, Inc</pub><pmid>22565548</pmid><doi>10.1002/dvdy.23800</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-8388
ispartof Developmental dynamics, 2012-07, Vol.241 (7), p.1169-1182
issn 1058-8388
1097-0177
language eng
recordid cdi_proquest_miscellaneous_1020828299
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Animals
Blotting, Western
Cell Proliferation - drug effects
Female
Fluorescent Antibody Technique
GEF-H1/RhoA/ROCK
Guanine Nucleotide Exchange Factors
Hypertrophy
Mice
Mice, Inbred C57BL
Mice, Knockout
microtubule
Microtubules - drug effects
Microtubules - metabolism
multi-layered hypertrophied MEE
Nocodazole - pharmacology
Organ Culture Techniques
palatal fusion
Palate - drug effects
Palate - embryology
Palate - metabolism
Pregnancy
Proto-Oncogene Proteins
Real-Time Polymerase Chain Reaction
Rho Guanine Nucleotide Exchange Factors
rhoA GTP-Binding Protein - genetics
rhoA GTP-Binding Protein - metabolism
Signal Transduction - drug effects
Transforming Growth Factor beta - genetics
Transforming Growth Factor beta - metabolism
title Multi-Layered hypertrophied MEE formation by microtubule disruption via GEF-H1/RhoA/ROCK signaling pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Layered%20hypertrophied%20MEE%20formation%20by%20microtubule%20disruption%20via%20GEF-H1/RhoA/ROCK%20signaling%20pathway&rft.jtitle=Developmental%20dynamics&rft.au=Kitase,%20Yukiko&rft.date=2012-07&rft.volume=241&rft.issue=7&rft.spage=1169&rft.epage=1182&rft.pages=1169-1182&rft.issn=1058-8388&rft.eissn=1097-0177&rft_id=info:doi/10.1002/dvdy.23800&rft_dat=%3Cproquest_cross%3E3958028661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766814133&rft_id=info:pmid/22565548&rfr_iscdi=true